Citation: Ruijun Song, Huixu Xie, Guiting Liu. Advances of MXene-based hydrogels for chronic wound healing[J]. Chinese Chemical Letters, ;2025, 36(7): 110442. doi: 10.1016/j.cclet.2024.110442 shu

Advances of MXene-based hydrogels for chronic wound healing

    * Corresponding authors.
    E-mail addresses: aitian007@126.com (H. Xie), liugt@scu.edu.cn (G. Liu).
  • Received Date: 21 June 2024
    Revised Date: 8 September 2024
    Accepted Date: 10 September 2024
    Available Online: 12 September 2024

Figures(7)

  • Promoting chronic wound healing has always been a hot topic in the field of biomaterials due to its heavy burden on both patients' quality of life and healthcare systems. MXene is a type of two-dimensional (2D) nanomaterial with a unique physical structure and surface chemical properties. The remarkable antibacterial capacity, fast photothermal response ability and electrical conductivity of MXene, indicate that MXene-based hydrogels possess considerable potential for promoting chronic wound healing. In this review, we summarize the preparation and properties of MXene, and mainly focus on the applications of MXene-based hydrogels in chronic wound healing. The purpose of this review is to provide a reference for further study and promote the application of MXene-based hydrogels in clinical practice in the future.
  • 加载中
    1. [1]

      K. Jarbrink, G. Ni, H. Sonnergren, et al., Syst. Rev. 5 (2016) 152.  doi: 10.1186/s13643-016-0329-y

    2. [2]

      P.Z. Zhang, J. Lu, Y.L. Jing, et al., Ann. Med. 49 (2017) 106–116.  doi: 10.1080/07853890.2016.1231932

    3. [3]

      G.T. Liu, Y. Zhou, Z.J. Xu, et al., Chin. Chem. Lett. 34 (2023) 107705.  doi: 10.1016/j.cclet.2022.07.048

    4. [4]

      T. Velnar, T. Bailey, V. Smrkoli, J. Int. Med. Res. 37 (2009) 1528–1542.  doi: 10.1177/147323000903700531

    5. [5]

      A. Stojadinovic, J.W. Carlson, G.S. Schultz, T.A. Davis, E.A. Elster, Gynecol. Oncol. 111 (2008) S70–S80.  doi: 10.1016/j.ygyno.2008.07.042

    6. [6]

      P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, Front. Physiol. 9 (2018) 419.  doi: 10.3389/fphys.2018.00419

    7. [7]

      G. Han, R. Ceilley, Adv. Ther. 34 (2017) 599–610.  doi: 10.1007/s12325-017-0478-y

    8. [8]

      S.M. Wu, H. Wang, L. Li, et al., Chin. Chem. Lett. 31 (2020) 961–968.  doi: 10.1016/j.cclet.2020.02.046

    9. [9]

      M. Rafiq, S.U. Rather, T.U. Wani, et al., Chin. Chem. Lett. 34 (2023) 108463.  doi: 10.1016/j.cclet.2023.108463

    10. [10]

      Y.M. Wang, W. Feng, Y. Chen, Chin. Chem. Lett. 31 (2020) 937–946.  doi: 10.1016/j.cclet.2019.11.016

    11. [11]

      N. Asadi, H. Pazoki-Toroudi, A.R. Del Bakhshayesh, et al., Int. J. Biol. Macromol. 170 (2021) 728–750.

    12. [12]

      Y.K. Li, H.Y. Zheng, Y.X. Liang, et al., Chin. Chem. Lett. 33 (2022) 5030–5034.  doi: 10.1016/j.cclet.2022.03.116

    13. [13]

      G.T. Liu, Z.T. Bao, J. Wu, Chin. Chem. Lett. 31 (2020) 1817–1821.  doi: 10.1016/j.cclet.2020.03.005

    14. [14]

      S. Cheng, M. Pan, D.R. Hu, et al., Chin. Chem. Lett. 34 (2023) 108276.  doi: 10.1016/j.cclet.2023.108276

    15. [15]

      C.Y. Mao, Y.M. Xiang, X.M. Liu, et al., ACS Nano 12 (2018) 1747–1759.  doi: 10.1021/acsnano.7b08500

    16. [16]

      A. Rozmyslowska-Wojciechowska, E. Karwowska, M. Gloc, et al., Materials 13 (2020) 4587.  doi: 10.3390/ma13204587

    17. [17]

      H. Zheng, S.Q. Wang, F. Cheng, et al., Chem. Eng. J. 424 (2021) 130148.

    18. [18]

      X. Yang, C.Q. Zhang, D.W. Deng, et al., Small 18 (2022) 2104368.

    19. [19]

      K. Rasool, M. Helal, A. Ali, et al., ACS Nano 10 (2016) 3674–3684.  doi: 10.1021/acsnano.6b00181

    20. [20]

      J.L. Fu, D. Wang, Z.N. Tang, et al., J. Nanobiotechnol. 22 (2024) 384.

    21. [21]

      S.S. Hua, B.G. Huang, Z.M. Le, Q.Z. Huang, Mater. Des. 231 (2023) 112033.

    22. [22]

      P. Zhang, X.J. Yang, P. Li, Y.Y. Zhao, Q.J. Niu, Soft Matter 16 (2020) 162–169.  doi: 10.1039/c9sm01985e

    23. [23]

      L.Y. Sun, L. Fan, F.K. Bian, et al., Research 2021 (2021) 9838490.

    24. [24]

      M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.  doi: 10.1002/adma.201102306

    25. [25]

      Y. Gogotsi, B. Anasori, ACS Nano 13 (2019) 8491–8494.  doi: 10.1021/acsnano.9b06394

    26. [26]

      G. Deysher, C.E. Shuck, K. Hantanasirisakul, et al., ACS Nano 14 (2020) 204–217.  doi: 10.1021/acsnano.9b07708

    27. [27]

      M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Acc. Chem. Res. 51 (2018) 591–599.  doi: 10.1021/acs.accounts.7b00481

    28. [28]

      M. Carey, M.W. Barsoum, Mater. Today Adv. 9 (2021) 100120.

    29. [29]

      L.Y. Liang, G.J. Han, Y. Li, et al., ACS Appl. Mater. Interfaces 11 (2019) 25399–25409.  doi: 10.1021/acsami.9b07294

    30. [30]

      Y. Dall'Agnese, M.R. Lukatskaya, K.M. Cook, et al., Electrochem. Commun. 48 (2014) 118–122.

    31. [31]

      G.Y. Liu, J.H. Zou, Q.Y. Tang, et al., ACS Appl. Mater. Interfaces 9 (2017) 40077–40086.  doi: 10.1021/acsami.7b13421

    32. [32]

      J.B. Qiao, Y. Gong, H.W. Liu, et al., Phys. Rev. Mater. 2 (2018) 054002.

    33. [33]

      R.X. Deng, H.R. Zhang, Y.H. Zhang, et al., Chin. Phys. B 26 (2017) 067901.  doi: 10.1088/1674-1056/26/6/067901

    34. [34]

      X. Xiao, H.M. Yu, H.Y. Jin, et al., ACS Nano 11 (2017) 2180–2186.  doi: 10.1021/acsnano.6b08534

    35. [35]

      J. Jia, T.L. Xiong, L.L. Zhao, et al., ACS Nano 11 (2017) 12509–12518.  doi: 10.1021/acsnano.7b06607

    36. [36]

      Z. Zhang, F. Zhang, H.C. Wang, et al., J. Mater. Chem. C 5 (2017) 10822–10827.

    37. [37]

      F. Zhang, Z. Zhang, H.C. Wang, et al., Phys. Rev. Mater. 1 (2017) 034002.  doi: 10.1103/PhysRevMaterials.1.034002

    38. [38]

      C.E. Shuck, A. Sarycheva, M. Anayee, et al., Adv. Eng. Mater. 22 (2020) 1901241.

    39. [39]

      X.H. Sang, Y. Xie, D.E. Yilmaz, et al., Nat. Commun. 9 (2018) 2266.

    40. [40]

      Y.J. Dong, S.S. Li, X.Y. Li, X.Y. Wang, Int. J. Biol. Macromol. 190 (2021) 693–699.

    41. [41]

      Q.N. You, J.H. Peng, Z.M. Chang, et al., Talanta 235 (2021) 122770.

    42. [42]

      L. Jin, X.Q. Guo, D. Gao, et al., NPG Asia Mater. 13 (2021) 24.

    43. [43]

      Y.P. Guo, H.S. Wang, X. Feng, et al., Nanotechnology 32 (2021) 195701.  doi: 10.1088/1361-6528/abe153

    44. [44]

      J.H. Yin, S.S. Pan, X. Guo, et al., Nano-Micro Lett. 13 (2021) 30.

    45. [45]

      W.N. Wu, M.H. Wan, Q. Fei, et al., Pest Manage. Sci. 77 (2021) 4960–4970.  doi: 10.1002/ps.6538

    46. [46]

      H.J. Fang, Y.S. Pan, M.Y. Yin, C.L. Pan, Mater. Res. Bull. 121 (2020) 110618.

    47. [47]

      H.G. Cheng, Q.X. Liu, S.P. Han, et al., ACS Appl. Mater. Interfaces 12 (2020) 37637–37646.  doi: 10.1021/acsami.0c13215

    48. [48]

      X.Y. Liu, X.X. Jin, L. Li, et al., J. Mater. Chem. A 8 (2020) 12526–12537.  doi: 10.1039/d0ta03048a

    49. [49]

      J.N. Xuan, Z.Q. Wang, Y.Y. Chen, et al., Angew. Chem. Int. Ed. 55 (2016) 14569–14574.  doi: 10.1002/anie.201606643

    50. [50]

      Z.B. Sun, H.H. Xie, S.Y. Tang, et al., Angew. Chem. Int. Ed. 54 (2015) 11526–11530.  doi: 10.1002/anie.201506154

    51. [51]

      K. Chaudhuri, M. Alhabeb, Z.X. Wang, et al., ACS Photonics 5 (2018) 1115–1122.  doi: 10.1021/acsphotonics.7b01439

    52. [52]

      G.N. Cai, Z.Z. Yu, P. Tong, D.P. Tang, Nanoscale 11 (2019) 15659–15667.  doi: 10.1039/c9nr05797h

    53. [53]

      J.J. Hu, Y.J. Cheng, X.Z. Zhang, Nanoscale 10 (2018) 22657–22672.  doi: 10.1039/c8nr07627h

    54. [54]

      P. Xue, H.K. Bisoyi, Y.H. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 3390–3396.  doi: 10.1002/anie.202014533

    55. [55]

      Z.C. Sun, C.Y. Song, J.J. Zhou, et al., Macromol. Rapid Commun. 42 (2021) 2100499.

    56. [56]

      S. Wang, Z.H. Zhang, S.H. Wei, et al., Acta Biomater. 130 (2021) 138–148.

    57. [57]

      R.Y. Li, L.B. Zhang, L. Shi, P. Wang, ACS Nano 11 (2017) 3752–3759.  doi: 10.1021/acsnano.6b08415

    58. [58]

      Z.K. Hu, H.J. Zhang, Z.Q. Li, et al., Chin. Chem. Lett. 35 (2024) 109527.  doi: 10.1016/j.cclet.2024.109527

    59. [59]

      D.X. Wu, R.X. Zhao, Y. Chen, et al., Phys. Chem. Chem. Phys. 23 (2021) 3341–3350.  doi: 10.1039/d0cp05928e

    60. [60]

      R. Serra, R. Grande, L. Butrico, et al., Expert Rev. Anti Infect. Ther. 13 (2015) 605–613.  doi: 10.1586/14787210.2015.1023291

    61. [61]

      I. Levin-Reisman, I. Ronin, O. Gefen, et al., Science 355 (2017) 826–830.  doi: 10.1126/science.aaj2191

    62. [62]

      L.M. Weiner-Lastinger, S. Abner, J.R. Edwards, et al., Infect. Control Hosp. Epidemiol. 41 (2020) 1–18.  doi: 10.1017/ice.2019.296

    63. [63]

      G.P. Lim, C.F. Soon, N.L. Ma, et al., Environ. Res. 201 (2021) 111592.

    64. [64]

      L. Zhou, H. Zheng, Z.X. Liu, et al., ACS Nano 15 (2021) 2468–2480.  doi: 10.1021/acsnano.0c06287

    65. [65]

      K. Rasool, R.P. Pandey, P.A. Rasheed, et al., Mater. Today 30 (2019) 80–102.

    66. [66]

      A.A. Shamsabadi, M.S. Gh, B. Anasori, M. Soroush, ACS Sustainable Chem. Eng. 6 (2018) 16586–16596.

    67. [67]

      H. Riazi, M. Anayee, K. Hantanasirisakul, et al., Adv. Mater. Interfaces 7 (2020) 1902008.

    68. [68]

      A. Rozmyslowska-Wojciechowska, J. Mitrzak, A. Szuplewska, et al., Materials 13 (2020) 2347.  doi: 10.3390/ma13102347

    69. [69]

      L.F. Gao, C. Li, W.C. Huang, et al., Chem. Mater. 32 (2020) 1703–1747.  doi: 10.1021/acs.chemmater.9b04408

    70. [70]

      D.B. Xiong, X.F. Li, Z.M. Bai, S.G. Lu, Small 14 (2018) 1703419.

    71. [71]

      A. Sinha, H.M. Zhao Dhanjai, et al., Trac-Trend Anal. Chem. 105 (2018) 424–435.

    72. [72]

      A.V. Mohammadi, J. Rosen, Y. Gogotsi, Science 372 (2021) 1165.  doi: 10.1109/icassp39728.2021.9413652

    73. [73]

      Y.Q. Yao, J. Zhao, X.H. Yang, C.P. Chai, Chin. Chem. Lett. 32 (2021) 620–634.  doi: 10.1016/j.cclet.2020.07.029

    74. [74]

      K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 30 (2018) 1804779.

    75. [75]

      B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.

    76. [76]

      J.B. Pang, R.G. Mendes, A. Bachmatiuk, et al., Chem. Soc. Rev. 48 (2019) 72–133.  doi: 10.1039/c8cs00324f

    77. [77]

      M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Phys. Rev. B 94 (2016) 125152.  doi: 10.1103/PhysRevB.94.125152

    78. [78]

      A.D. Dillon, M.J. Ghidiu, A.L. Krick, et al., Adv. Funct. Mater. 26 (2016) 4162–4168.  doi: 10.1002/adfm.201600357

    79. [79]

      M. Khazaei, M. Arai, T. Sasaki, et al., Adv. Funct. Mater. 23 (2013) 2185–2192.  doi: 10.1002/adfm.201202502

    80. [80]

      M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992–1005.  doi: 10.1002/adma.201304138

    81. [81]

      Y. Xie, P.R.C. Kent, Phys. Rev. B 87 (2013) 235441.  doi: 10.1103/PhysRevB.87.235441

    82. [82]

      D. Magne, V. Mauchamp, S. Celerier, P. Chartier, T. Cabioc’h, Phys. Chem. Chem. Phys. 18 (2016) 30946–30953.

    83. [83]

      N.M. Caffrey, Nanoscale 10 (2018) 13520–13530.  doi: 10.1039/c8nr03221a

    84. [84]

      O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Nat. Commun. 4 (2013) 1716.

    85. [85]

      M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Dalton Trans. 44 (2015) 9353–9358.  doi: 10.1039/c5dt01247c

    86. [86]

      A. VahidMohammadi, M. Mojtabavi, N.M. Caffrey, M. Wanunu, M. Beidaghi, Adv. Mater. 31 (2019) 1806931.

    87. [87]

      L.M. Wu, X.T. Jiang, J.L. Zhao, et al., Laser Photonics Rev. 12 (2018) 1800215.

    88. [88]

      W. Yuan, X.Y. Qu, Y. Lu, et al., Chin. Chem. Lett. 32 (2021) 2021–2026.  doi: 10.1016/j.cclet.2020.12.003

    89. [89]

      J.K. Wychowaniec, J. Litowczenko, K. Tadyszak, et al., Acta Biomater. 115 (2020) 104–115.

    90. [90]

      Q.H. Wang, X.F. Pan, X.P. Wang, et al., Compos. Part B-Eng. 197 (2020) 108187.

    91. [91]

      Y.Y. Zhu, J. Liu, T. Guo, et al., ACS Nano 15 (2021) 1465–1474.  doi: 10.1021/acsnano.0c08830

    92. [92]

      Y.Z. Zhang, K.H. Lee, D.H. Anjum, et al., Sci. Adv. 4 (2018) eaat0098.

    93. [93]

      B.P. Zhang, P.W. Wong, A.K. An, Chem. Eng. J. 430 (2022) 133054.

    94. [94]

      Y.L. Zhang, K.X. Chen, Y.S. Li, et al., ACS Appl. Mater. Interfaces 11 (2019) 47350–47357.  doi: 10.1021/acsami.9b16078

    95. [95]

      F. Cheng, X.T. Yi, J.L. Dai, et al., Cell Rep. Phys. Sci. 4 (2023) 101619.

    96. [96]

      K.H. Lee, Y.Z. Zhang, H. Kim, et al., Small Methods 5 (2021) 2100819.

    97. [97]

      T.X. Shang, Z.F. Lin, C.S. Qi, et al., Adv. Funct. Mater. 29 (2019) 1903960.

    98. [98]

      Y.Q. Deng, T.X. Shang, Z.T. Wu, et al., Adv. Mater. 31 (2019) 1902432.

    99. [99]

      E. Hemmer, N. Venkatachalam, H. Hyodo, et al., Nanoscale 5 (2013) 11339–11361.  doi: 10.1039/c3nr02286b

    100. [100]

      H.X. Zhang, Y. Fan, P. Pei, et al., Angew. Chem. Int. Ed. 58 (2019) 10153–10157.  doi: 10.1002/anie.201903536

    101. [101]

      H. Lin, Y. Chen, J.L. Shi, Adv. Sci. 5 (2018) 1800518.

    102. [102]

      F. Hao, L.Y. Wang, B.L. Chen, et al., ACS Appl. Mater. Interfaces 13 (2021) 46938–46950.  doi: 10.1021/acsami.1c15312

    103. [103]

      Y. Chen, W.W. Liu, S.J. Wan, et al., Adv. Funct. Mater. 34 (2024) 2309191.

    104. [104]

      H. Park, J.U. Kim, S. Kim, N.S. Hwang, H.D. Kim, Mater. Today Bio 23 (2023) 100881.

    105. [105]

      Y.F. Zhang, Z.S. Xu, Y. Yuan, et al., Adv. Funct. Mater. 33 (2023) 2300299.

    106. [106]

      L. Jin, X.Q. Guo, D. Gao, et al., Bioact. Mater. 16 (2022) 162–172.

    107. [107]

      J.Y. He, H.Y. Zou, J.J. Zhou, C.Y. Deng, J. Drug Deliv. Sci. Technol. 91 (2024) 105207.

    108. [108]

      P.P. He, X.X. Du, Y. Cheng, et al., Small 18 (2022) 2200263.

    109. [109]

      L. Jin, Y.F. Ma, R.Y. Wang, et al., Mater. Today Adv. 14 (2022) 100224.

    110. [110]

      C.Y. Xing, S.Y. Chen, X. Liang, et al., ACS Appl. Mater. Interfaces 10 (2018) 27631–27643.  doi: 10.1021/acsami.8b08314

    111. [111]

      K. Matsumoto, H. Funakoshi, H. Takahashi, K. Sakai, Biomedicines 2 (2014) 275–300.  doi: 10.3390/biomedicines2040275

    112. [112]

      R.M. Donlan, Emerg. Infect. Dis. 8 (2002) 881–890.  doi: 10.3201/eid0809.020063

    113. [113]

      Z. Versey, W.S.D. Nizer, E. Russell, et al., Front. Immunol. 12 (2021) 648554.

    114. [114]

      T.N. Demidova-Rice, M.R. Hamblin, I.M. Herman, Adv. Skin Wound Care 25 (2012) 304–314.  doi: 10.1097/01.ASW.0000418541.31366.a3

    115. [115]

      J. Larouche, S. Sheoran, K. Maruyama, M.M. Martino, Adv. Wound Care 7 (2018) 209–231.  doi: 10.1089/wound.2017.0761

    116. [116]

      J.F. Li, Z.Y. Li, X.M. Liu, et al., Nat. Commun. 12 (2021) 1224.

    117. [117]

      F.M. Wu, H.L. Zheng, W.Z. Wang, et al., Sci. China Mater. 64 (2021) 748–758.  doi: 10.1007/s40843-020-1451-7

    118. [118]

      Q. Wu, L. Tan, X.M. Liu, et al., Appl. Catal. B 297 (2021) 120500.

    119. [119]

      Y.X. Liu, Y. Tian, Q.Y. Han, et al., Chem. Eng. J. 410 (2021) 128209.

    120. [120]

      Z.C. Yu, C. Deng, C.H. Ding, et al., Int. J. Biol. Macromol. 266 (2024) 131080.

    121. [121]

      Y.J. Hsu, A. Nain, Y.F. Lin, et al., J. Nanobiotechnol. 20 (2022) 235.

    122. [122]

      Q.Y. Li, W. Wang, H.M. Feng, et al., J. Colloid Interface Sci. 604 (2021) 810–822.

    123. [123]

      A. Rosenkranz, G. Perini, J.Y. Aguilar-Hurtado, et al., Appl. Surf. Sci. 567 (2021) 150795.

    124. [124]

      X.L. Nie, S.L. Wu, F.L. Huang, Q.Q. Wang, Q.F. Wei, ACS Appl. Mater. Interfaces 13 (2021) 2245–2255.  doi: 10.1021/acsami.0c18474

    125. [125]

      X.Q. Zhu, Y.N. Zhu, K. Jia, et al., Nanoscale 12 (2020) 19129–19141.  doi: 10.1039/d0nr04925e

    126. [126]

      Y.W. Zheng, Y.L. Yan, L.M. Lin, et al., Acta Biomater. 142 (2022) 113–123.

    127. [127]

      J.H. Jang, E.J. Lee, Materials 14 (2021) 4453.  doi: 10.3390/ma14164453

    128. [128]

      R.R. Guo, M. Xiao, W.Y. Zhao, et al., Acta Biomater. 139 (2022) 105–117.

    129. [129]

      D.L. Gan, L. Han, M.H. Wang, et al., ACS Appl. Mater. Interfaces 10 (2018) 36218–36228.  doi: 10.1021/acsami.8b10280

    130. [130]

      P.F. Tang, L. Han, P.F. Li, et al., ACS Appl. Mater. Interfaces 11 (2019) 7703–7714.  doi: 10.1021/acsami.8b18931

    131. [131]

      L.C. Kloth, J.M. McCulloch, Adv. Wound Care 9 (1996) 42–45.

    132. [132]

      Y. Long, H. Wei, J. Li, et al., ACS Nano 12 (2018) 12533–12540.  doi: 10.1021/acsnano.8b07038

    133. [133]

      S. Ud-Din, A. Sebastian, P. Giddings, et al., PLoS One 10 (2015) e0124502.  doi: 10.1371/journal.pone.0124502

    134. [134]

      A.P. Liu, Y. Long, J. Li, et al., J. Nanobiotechnol. 19 (2021) 280.

    135. [135]

      L. Mao, S.M. Hu, Y.H. Gao, et al., Adv. Healthc. Mater. 9 (2020) 2000872.

    136. [136]

      Y. Li, M.M. Han, Y. Cai, et al., Biomater. Sci. 10 (2022) 1068–1082.  doi: 10.1039/d1bm01604k

    137. [137]

      B.L. Guo, P.X. Ma, Biomacromolecules 19 (2018) 1764–1782.  doi: 10.1021/acs.biomac.8b00276

  • 加载中
    1. [1]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    2. [2]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    5. [5]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    6. [6]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    7. [7]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    8. [8]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    9. [9]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    10. [10]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    11. [11]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    12. [12]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    13. [13]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    14. [14]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    15. [15]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    16. [16]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    17. [17]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    18. [18]

      Zhuan ChenBo YangJun LiKun DuJiangchen FuXiao WuJiazhen CaoMingyang Xing . Environmentally safe storage and sustained release of hydrogen peroxide utilizing commercial hydrogel. Chinese Chemical Letters, 2025, 36(6): 110320-. doi: 10.1016/j.cclet.2024.110320

    19. [19]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    20. [20]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return