Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts
-
* Corresponding author.
E-mail address: yxfang@fzu.edu.cn (Y. Fang).
Citation:
Yan Wang, Jiaqi Zhang, Xiaofeng Wu, Sibo Wang, Masakazu Anpo, Yuanxing Fang. Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts[J]. Chinese Chemical Letters,
;2025, 36(2): 110439.
doi:
10.1016/j.cclet.2024.110439
H. Reiche, A.J. Bard, J. Am. Chem. Soc. 101 (1979) 3127–3128.
doi: 10.1021/ja00505a054
W.W. Dunn, Y. Aikawa, A.J. Bard, J. Am. Chem. Soc. 103 (1981) 6893–6897.
doi: 10.1021/ja00413a020
N.C. Rockwell, S.S. Martin, J.C. Lagarias, Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2300770120.
doi: 10.1073/pnas.2300770120
R.M. Soo, J. Hemp, D.H. Parks, et al., Science 355 (2017) 1436–1440.
doi: 10.1126/science.aal3794
D.T. Johnston, F. Wolfe-Simon, A. Pearson, A.H. Knoll, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 16925–16929.
doi: 10.1073/pnas.0909248106
P. Sánchez-Baracaldo, T. Cardona, New Phytol. 225 (2020) 1440–1446.
doi: 10.1111/nph.16249
L. Wang, Y. Kong, Y. Fang, et al., Adv. Funct. Mater. 32 (2022) 2208101.
doi: 10.1002/adfm.202208101
G. Jia, M. Sun, Y. Wang, et al., Adv. Funct. Mater. 32 (2022) 2206817.
doi: 10.1002/adfm.202206817
M. Liu, C. Wei, H. Zhuzhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202113389.
doi: 10.1002/anie.202113389
Z. Xie, W. Wang, X. Ke, et al., Appl. Catal. B: Environ. 325 (2023) 122312.
doi: 10.1016/j.apcatb.2022.122312
Z. Luo, Y. Hou, J. Zhang, et al., Beilstein J. Org. Chem. 14 (2018) 2331–2339.
doi: 10.3762/bjoc.14.208
Z. Hu, Z. Shen, J.C. Yu, Green Chem. 19 (2017) 588–613.
doi: 10.1039/C6GC02825J
Z.A. Lan, M. Wu, Z. Fang, et al., Angew. Chem. Int. Ed. 60 (2021) 16355– 16359.
doi: 10.1002/anie.202103992
S. Chai, X. Chen, X. Zhang, et al., Environ. Sci. 9 (2022) 2464–2469 Nano.
doi: 10.1039/d2en00135g
N. Smirnoff, D. Arnaud, New Phytol. 221 (2019) 1197–1214.
doi: 10.1111/nph.15488
X. You, F. Zhang, Z. Liu, et al., Plant Physiol. 190 (2022) 1095–1099.
doi: 10.1093/plphys/kiac317
Y. Wang, Y. Fang, Y. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202307236.
doi: 10.1002/anie.202307236
J. Korenaga, S. Marchi, Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2309181120.
doi: 10.1073/pnas.2309181120
A.N. Halliday, Nature 427 (2004) 505–509.
doi: 10.1038/nature02275
L.E. Rodriguez, Science 379 (2023) 539–540.
doi: 10.1126/science.adg2630
C. Meyer, Science 227 (1985) 1421–1428.
doi: 10.1126/science.227.4693.1421
A. Bekker, M.E. Barley, M.L. Fiorentini, et al., Science 326 (2009) 1086–1089.
doi: 10.1126/science.1177742
J. Hao, W. Liu, J.L. Goff, et al., Sci. Adv. 8 (2022) eabn2226.
doi: 10.1126/sciadv.abn2226
E.K. Moore, J. Hao, A. Prabhu, et al., J. Geophys. Res. : Biogeo. 123 (2018) 743–759.
doi: 10.1002/2017jg004067
J.D. Greenough, K. MacKenzie, Geosci. Can. 42 (2015) 351–367.
S.S. Sun, Geochim. Cosmochim. Acta 46 (1982) 179–192.
doi: 10.1016/0016-7037(82)90245-9
K. Righter, M. Schönbächler, K. Pando, et al., Earth Planet. Sci. Lett. 552 (2020) 116590.
doi: 10.1016/j.epsl.2020.116590
J.M. Trigo-Rodríguez, A. Rimola, S. Tanbakouei, et al., Space Sci. Rev. 215 (2019) 18.
doi: 10.1007/s11214-019-0583-0
E.M.M.E. Van Kooten, D. Wielandt, M. Schiller, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 2011–2016.
doi: 10.1073/pnas.1518183113
M. Schiller, M. Bizzarro, J. Siebert, Sci. Adv. 6 (2020) eaay7604.
S. Mostefaoui, C. Perron, E. Zinner, G. Sagon, Geochim. Cosmochim. Acta 64 (2000) 1945–1964.
doi: 10.1016/S0016-7037(99)00409-3
C. Lv, J. Liu, J. Geophys. Res. : Sol. Earth 127 (2022) e2021JB023718.
R. Li, C. Zhang, K. You, et al., Chin. Chem. Lett. 34 (2023) 108801.
doi: 10.1016/j.cclet.2023.108801
Q. Lan, S. Jin, B. Yang, et al., Trans. Tianjin Univ. 28 (2022) 214–225.
doi: 10.1007/s12209-022-00324-z
S. Liu, Q. Zhao, X. Han, et al., Trans. Tianjin Univ. 29 (2023) 293–303.
doi: 10.1007/s12209-023-00360-3
Y. Xu, Y. Pan, W. Yahan, et al., Appl. Catal. B: Environ. 331 (2023) 122701.
doi: 10.1016/j.apcatb.2023.122701
L. Wang, X. Cui, Y. Xu, et al., Chem. Commun. 58 (2022) 10469–10479.
doi: 10.1039/d2cc03803j
L. Yang, H. Chen, Y. Xu, et al., Chem. Eng. Sci. 251 (2022) 117435.
doi: 10.1016/j.ces.2022.117435
L. Wang, P. Cai, Z. Liu, et al., J. Colloid Interface Sci. 607 (2022) 203–209.
doi: 10.1109/yac57282.2022.10023642
L. Xu, L. Li, Z. Hu, J.C. Yu, J. Catal. 418 (2023) 300–311.
doi: 10.1016/j.jcat.2023.01.019
Y. Xu, Y. Cao, L. Tan, et al., J. Colloid Interface Sci. 633 (2023) 323–332.
doi: 10.1016/j.jcis.2022.11.120
L. Li, Z. Hu, Y. Kang, et al., Nat. Commun. 14 (2023) 1890.
doi: 10.1038/s41467-023-37007-9
G. h. Moon, M. Fujitsuka, S. Kim, et al., ACS Catal. 7 (2017) 2886–2895.
doi: 10.1021/acscatal.6b03334
C. Hu, H. Huang, F. Chen, et al., Adv. Funct. Mater. 30 (2020) 1908168.
doi: 10.1002/adfm.201908168
L. Li, L. Xu, Z. Hu, J.C. Yu, Adv. Funct. Mater. 31 (2021) 2106120.
doi: 10.1002/adfm.202106120
Z. Wang, S. Shen, Z. Lin, et al., Adv. Funct. Mater. 32 (2022) 2112832.
doi: 10.1002/adfm.202112832
Y. Fang, Y. Hou, X. Fu, X. Wang, Chem. Rev. 122 (2022) 4204–4256.
doi: 10.1021/acs.chemrev.1c00686
C. He, F. Han, W. Zhang, Chin. Chem. Lett. 33 (2022) 404–409.
doi: 10.1016/j.cclet.2021.07.010
W. Wu, Q. Zhang, X. Wang, et al., ACS Catal. 7 (2017) 7267–7273.
doi: 10.1021/acscatal.7b01671
F. Guo, W. Shi, C. Zhu, et al., Appl. Catal. B: Environ. 226 (2018) 412–420.
doi: 10.1016/j.apcatb.2017.12.064
Z. Pan, M. Zhao, H. Zhuzhang, et al., ACS Catal. 11 (2021) 13463–13471.
doi: 10.1021/acscatal.1c03687
Z. Chen, Y. Fang, L. Wang, et al., Appl. Catal. B: Environ. 296 (2021) 120369.
doi: 10.1016/j.apcatb.2021.120369
S. Xue, W. Huang, W. Lin, et al., Chem. Catal. 2 (2022) 125–139.
doi: 10.1016/j.checat.2021.11.019
D. Zhou, X. Xue, Q. Luan, et al., Chin. Chem. Lett. 34 (2023) 107798.
doi: 10.1016/j.cclet.2022.107798
M. Zhong, D. Yang, C. Xie, et al., Small 12 (2016) 5564–5571.
doi: 10.1002/smll.201601959
Y. Tang, W. Li, P. Feng, et al., Adv. Funct. Mater. 30 (2020) 1908754.
doi: 10.1002/adfm.201908754
S. He, J. Wang, X. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1905228.
doi: 10.1002/adfm.201905228
S. Wang, Y. Hou, X. Wang, ACS Appl. Mater. Interfaces 7 (2015) 4327–4335.
doi: 10.1021/am508766s
P. Wang, Y. Ren, R. Wang, et al., Nat. Commun. 11 (2020) 1576.
doi: 10.1038/s41467-020-15416-4
S. Chen, S. Shen, G. Liu, et al., Angew. Chem. Int. Ed. 54 (2015) 3047–3051.
doi: 10.1002/anie.201409906
J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 46 (2013) 1900–1909.
doi: 10.1021/ar300227e
R. Shen, J. Xie, Q. Xiang, et al., Chin. J. Catal. 40 (2019) 240–288.
doi: 10.1016/S1872-2067(19)63294-8
Y. Li, W. Cheng, H. Su, et al., Nano Energy 77 (2020) 105121.
doi: 10.1016/j.nanoen.2020.105121
X. Wang, J.C. Yu, P. Liu, et al., J. Photoch. Photobio. A 179 (2006) 339–347.
doi: 10.1016/j.jphotochem.2005.09.007
J. Wu, Z. Liu, X. Lin, et al., Nat. Commun. 13 (2022) 6999.
doi: 10.1038/s41467-022-34848-8
G. Gao, X. Wang, Q. Chen, et al., J. Mater. Chem. C 9 (2021) 1593–1603.
doi: 10.1039/d0tc04874g
Z. Wang, Y. Ding, J. Wang, Nanomaterials 9 (2019) 1397.
doi: 10.3390/nano9101397
N.G. Hădărugă, C.A. Chirilă, R.N. Szakal, et al., Foods 11 (2022) 3632.
doi: 10.3390/foods11223632
S. Zuo, Z.P. Wu, H. Zhang, X.W. Lou, Adv. Energy Mater. 12 (2022) 2103383.
doi: 10.1002/aenm.202103383
J. Wang, Y. Zhang, S. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202307808.
doi: 10.1002/anie.202307808
Y. Lin, L. Yu, L. Tang, et al., ACS Catal. 12 (2022) 5345–5355.
doi: 10.1021/acscatal.1c05598
R. Takahashi, T. Noguchi, J. Phys. Chem. B 111 (2007) 13833–13844.
doi: 10.1021/jp0760556
J.C.S. Wu, Y.T. Cheng, J. Catal. 237 (2006) 393–404.
doi: 10.1016/j.jcat.2005.11.023
G.M. Haselmann, B. Baumgartner, J. Wang, et al., ACS Catal. 10 (2020) 2964–2977.
doi: 10.1021/acscatal.9b05588
Y. Hao, X. Cao, C. Lei, et al., Mater. Today Catal. 2 (2023) 100012.
doi: 10.1016/j.mtcata.2023.100012
J. Luo, X. Wei, Y. Qiao, et al., Adv. Mater. 35 (2023) 2210110.
doi: 10.1002/adma.202210110
Y.X. Ye, J. Pan, F. Xie, et al., Porc. Natl. Acad. Sci. U. S. A. 118 (2021) e2103964118.
doi: 10.1073/pnas.2103964118
W. Liu, P. Wang, J. Chen, et al., Adv. Funct. Mater. 32 (2022) 2205119.
doi: 10.1002/adfm.202205119
X. Chen, X. Wang, X. Zhang, et al., Int. J. Hydrogen Energy 46 (2021) 35198–35208.
doi: 10.1016/j.ijhydene.2021.08.090
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299