Citation: Li Li, Lin-Lin Zhang, Yansha Gao, Lu-Ying Duan, Wuying Yang, Xigen Huang, Yanping Hong, Jiaxin Hong, Lin Yuan, Limin Lu. Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin[J]. Chinese Chemical Letters, ;2025, 36(7): 110436. doi: 10.1016/j.cclet.2024.110436 shu

Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin

Figures(5)

  • Developing an accurate and visual sensing strategy for trace levels of fluoroquinolone residues that pose threat to food safety and human health is highly desired but remains challenging. Herein, a target self-calibration ratiometric fluorescent sensing platform has been designed for sensitive visual detection of levofloxacin (LEV) based on fluorescent europium metal-organic framework (Eu-MOF) probe. Specifically, the Eu-MOF was facilely synthesized via directly mixing Eu3+ with 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) ligand at room temperature, which exhibited well-stable red fluorescence at 612 nm. Upon the addition of target LEV, the significant fluorescence quenching from Eu3+ was observed owing to the inner filter effect between the Eu-MOF and LEV. While the intrinsic fluorescence for LEV at 462 nm was gradually enhanced, thereby realizing the self-calibration ratiometric fluorescence responses to LEV. Through this strategy, LEV can be detected down to 27 nmol/L. Furthermore, a test paper-based Eu-MOF integrated with the smartphone assisted RGB color analysis was exploited for the quantitative monitoring of LEV through the multi-color changes from red to blue, thus achieved portable, convenient and visual detection of LEV in honey and milk samples. Therefore, the developed strategy could provide a useful tool for supporting the practical on-site test in food samples.
  • 加载中
    1. [1]

      X. Van Doorslaer, J. Dewulf, H. Van Langenhove, et al., Sci. Total Environ. 500-501 (2014) 250–269.

    2. [2]

      F. Meng, S. Sun, J. Geng, et al., J. Hazard. Mater. 453 (2023) 131322.

    3. [3]

      J. Sun, X.P. Liao, A.W. D’Souza, et al., Nat. Commun. 11 (2020) 1427.

    4. [4]

      E.S. Orman, H.S. Conjeevaram, R. Vuppalanchi, et al., Clin. Gastroenterol. Hepatol. 9 (2011) 517–523.

    5. [5]

      P. Kovalakova, L. Cizmas, T.J. McDonald, et al., Chemosphere 251 (2020) 126351.

    6. [6]

      M.K. Jin, Q. Zhang, W.L. Zhao, et al., J. Hazard. Mater. 424 (2022) 127509.

    7. [7]

      C. Aymard, H. Kanso, M.J. Serrano, et al., Food Chem. 370 (2022) 131016.

    8. [8]

      R. Jiang, D. Lin, Q. Zhang, et al., Sensor. Actuat. B: Chem. 350 (2022) 130902.

    9. [9]

      M.D.C. Gómez-Regalado, L. Espín-Moreno, L. Martín-Pozo, et al., Talanta 262 (2023) 124678.

    10. [10]

      L. Sun, Y. Chen, Y. Duan, et al., ACS Appl. Mater. Interfaces 13 (2021) 38923–38930.  doi: 10.1021/acsami.1c11949

    11. [11]

      J. Xiao, L. Qin, D. Zhao, et al., J. Hazard. Mater. 465 (2024) 133221.

    12. [12]

      N. Duan, Y. Chang, T. Su, et al., Biosens. Bioelectron. 249 (2024) 116022.

    13. [13]

      X. Zhang, F. Yang, T. Ren, et al., Chin. Chem. Lett. 34 (2023) 107835.

    14. [14]

      J. Wang, D. Li, Y. Ye, et al., Adv. Mater. 33 (2021) 2008020.

    15. [15]

      C. Wang, F. Qin, S. Tang, et al., Food Chem. 411 (2023) 135514.

    16. [16]

      V. Arul, N. Sampathkumar, S. Kotteeswaran, et al., Microchim. Acta 190 (2023) 242.

    17. [17]

      S. Xu, L. Li, D. Lin, et al., Chin. Chem. Lett. 34 (2023) 107997.

    18. [18]

      T. Garg, J.Kaur Renu, et al., Chem. Eng. J. 443 (2022) 136441.

    19. [19]

      N. Ding, B. Chen, L. Zhou, et al., Chin. Chem. Lett. 33 (2022) 3797–3801.

    20. [20]

      Q. Ouyang, M. Zhang, B. Wang, et al., J. Agric. Food Chem. 71 (2023) 13114–13123.  doi: 10.1021/acs.jafc.3c01578

    21. [21]

      X. Wang, K. Gopalsamy, G. Clavier, et al., Chem. Sci. 15 (2024) 6488–6499.  doi: 10.1039/d3sc06899d

    22. [22]

      Y. Zhao, J. Li, Y. Shi, et al., Chin. Chem. Lett. 36 (2025) 110132.  doi: 10.1016/j.cclet.2024.110132

    23. [23]

      Z.W. Huang, X.B. Li, L. Mei, et al., Adv. Funct. Mater. 34 (2024) 2404126.  doi: 10.1002/adfm.202404126

    24. [24]

      L. Li, L.L. Zhang, J. Zou, et al., Anal. Chim. Acta 1290 (2024) 342022.

    25. [25]

      X. Zhou, X. Wang, L. Shang, Chin. Chem. Lett. 34 (2023) 108093.

    26. [26]

      B. Wang, B. Yan, Talanta 208 (2020) 120438.

    27. [27]

      J. Chen, Y. Jin, T. Ren, et al., Food Chem. 386 (2022) 132751.

    28. [28]

      Z. Zhou, X. Wen, C. Shi, et al., Food Chem. 417 (2023) 135883.

    29. [29]

      L. Jiang, T. Chen, E. Song, et al., Chem. Eng. J. 427 (2022) 131563.

    30. [30]

      H. Ye, S. Koo, B. Zhu, et al., Anal. Chem. 94 (2022) 15423–15432.  doi: 10.1021/acs.analchem.2c03326

    31. [31]

      X. Yu, A.A. Ryadun, D.I. Pavlov, et al., Angew. Chem. Int. Ed. 62 (2023) e202306680.

    32. [32]

      Y. Wu, Y. Zhou, H. Long, et al., Food Chem. 422 (2023) 136250.

    33. [33]

      W. Shi, S. Zhang, Y. Wang, et al., Sensor. Actuat. B: Chem. 367 (2022) 132008.

    34. [34]

      H. Dong, S. Liu, Q. Liu, et al., Anal. Chem. 94 (2022) 12852–12859.  doi: 10.1021/acs.analchem.2c02852

    35. [35]

      J. Song, B. Zhao, Y. Wang, et al., Food Chem. 437 (2024) 137008.

  • 加载中
    1. [1]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    2. [2]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    7. [7]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    8. [8]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    9. [9]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    10. [10]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    11. [11]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    12. [12]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    13. [13]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    14. [14]

      Shengyi GongGuoqiang Feng . Visible light-triggered NIR ratiometric fluorescent metal-free CO-releasing molecule for self-monitoring of CO delivery and effective cancer therapy. Chinese Chemical Letters, 2025, 36(7): 110409-. doi: 10.1016/j.cclet.2024.110409

    15. [15]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    16. [16]

      Zhoupeng ZhengShengyi GongQianhua LiShiya ZhangGuoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191

    17. [17]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    20. [20]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return