N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction
-
* Corresponding author.
E-mail address: wangdl81125@hust.edu.cn (D. Wang).
Citation:
Chenhao Zhang, Qian Zhang, Yezhou Hu, Hanyu Hu, Junhao Yang, Chang Yang, Ye Zhu, Zhengkai Tu, Deli Wang. N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction[J]. Chinese Chemical Letters,
;2025, 36(3): 110429.
doi:
10.1016/j.cclet.2024.110429
Q. Sun, X.H. Li, K.X. Wang, et al., Energy Environ. Sci. 16 (2023) 1838–1869.
doi: 10.1039/d2ee03642h
M. Song, Q. Zhang, T. Shen, G. Luo, D. Wang, Chin. Chem. Lett. 35 (2024) 109083.
doi: 10.1016/j.cclet.2023.109083
Z. Li, Y. Hu, K. Chen, et al., Acta Phys. Chim. Sin. 37 (2021) 2010029.
H. Zhang, P.K. Shen, Chem. Rev. 112 (2012) 2780–2832.
doi: 10.1021/cr200035s
K. Jiao, J. Xuan, Q. Du, et al., Nature 595 (2021) 361–369.
doi: 10.1038/s41586-021-03482-7
X. Liu, Z. Zhao, J. Liang, et al., Angew. Chem. Int. Ed. 62 (2023) e202302134.
doi: 10.1002/anie.202302134
Y. Jiao, Y. Zheng, M. Jaroniec, S. Qiao, Chem. Soc. Rev. 44 (2015) 2060–2086.
doi: 10.1039/C4CS00470A
J. Li, W. Xia, X. Xu, et al., J. Am. Chem. Soc. 145 (2023) 27262–27272.
doi: 10.1021/jacs.3c05544
G. Fisseha, Y. Hu, Y. Yu, et al., Chin. Chem. Lett. 35 (2024) 108445.
doi: 10.1016/j.cclet.2023.108445
M. Song, W. Liu, J. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2212087.
doi: 10.1002/adfm.202212087
B. Genorio, D. Strmcnik, R. Subbaraman, et al., Nat. Mater. 9 (2010) 998–1003.
doi: 10.1038/nmat2883
H.Y. Kim, T. Kwon, Y. Ha, et al., Nano Lett. 20 (2020) 7413–7421.
doi: 10.1021/acs.nanolett.0c02812
V.R. Stamenkovic, B.S. Mun, M. Arenz, et al., Nat. Mater. 6 (2007) 241–247.
doi: 10.1038/nmat1840
C. Li, X. Ba, X. Jiang, et al., J. Electrochem. 29 (2023) 2210241.
C. Kim, F. Dionigi, V. Beermann, et al., Adv. Mater. 31 (2019) 1805617.
doi: 10.1002/adma.201805617
J. Li, Z. Wei, J. Electrochem. 24 (2018) 589–601.
W. Xiao, W. Lei, M. Gong, H.L. Xin, D. Wang, ACS Catal. 8 (2018) 3237–3256.
doi: 10.1021/acscatal.7b04420
W. Yan, X. Wang, M. Liu, et al., Adv. Funct. Mater. 34 (2024) 2310487.
doi: 10.1002/adfm.202310487
Z. Wang, X. Yao, Y. Kang, et al., Adv. Funct. Mater. 29 (2019) 1902987.
doi: 10.1002/adfm.201902987
J. Li, Z. Xi, Y.T. Pan, et al., J. Am. Chem. Soc. 140 (2018) 2926–2932.
doi: 10.1021/jacs.7b12829
D. Wang, H.L. Xin, R. Hovden, et al., Nat. Mater. 12 (2013) 81–87.
doi: 10.1038/nmat3458
X. Niu, R.Y. Shao, L. Zhang, et al., Mater. Chem. Front. 7 (2023) 3390–3397.
doi: 10.1039/d3qm00312d
T.W. Song, M.X. Chen, P. Yin, et al., Small 18 (2022) 2202916.
doi: 10.1002/smll.202202916
M. Gong, J. Zhu, M. Liu, et al., Nanoscale 11 (2019) 20301–20306.
doi: 10.1039/c9nr04975d
X. Ye, R.Y. Shao, P. Yin, H.W. Liang, Y.X. Chen, Inorg. Chem. 61 (2022) 15239–15246.
doi: 10.1021/acs.inorgchem.2c02501
J. Liang, Z. Zhao, N. Li, et al., Adv. Energy Mater. 10 (2020) 2000179.
doi: 10.1002/aenm.202000179
L. Bu, N. Zhang, S. Guo, et al., Science 354 (2016) 1410–1414.
doi: 10.1126/science.aah6133
J. Qin, P. Zou, R. Zhang, et al., ACS Sustain. Chem. Eng. 10 (2022) 14024–14033.
doi: 10.1021/acssuschemeng.2c04709
T.W. Song, C. Xu, Z.T. Sheng, et al., Nat. Commun. 13 (2022) 6521.
doi: 10.1038/s41467-022-34037-7
T. Najam, S.S.A. Shah, W. Ding, et al., Angew. Chem. Int. Ed. 57 (2018) 15101–15106.
doi: 10.1002/anie.201808383
Y. Hu, S. Wang, T. Shen, Y. Zhu, D. Wang, Energy Storage Sci. Technol. 11 (2022) 1264–1277.
doi: 10.23919/iccas55662.2022.10003760
X. Bai, S. Yan, J. Wang, et al., J. Mater. Chem. A 2 (2014) 17521–17529.
doi: 10.1039/C4TA02781G
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159–7329.
doi: 10.1021/acs.chemrev.6b00075
H. Jin, Z. Xu, Z.Y. Hu, et al., Nat. Commun. 14 (2023) 1518.
doi: 10.1038/s41467-023-37268-4
W. Ren, W. Zang, H. Zhang, et al., Carbon 142 (2019) 206–216.
doi: 10.1016/j.carbon.2018.10.054
H. Jiang, J. Gu, X. Zheng, et al., Energy Environ. Sci. 12 (2019) 322–333.
doi: 10.1039/c8ee03276a
C. Hu, L. Dai, Adv. Mater. 29 (2017) 1604942.
doi: 10.1002/adma.201604942
H. Kim, K. Lee, S.I. Woo, Y. Jung, Phys. Chem. Chem. Phys. 13 (2011) 17505–17510.
doi: 10.1039/c1cp21665a
N.P. Subramanian, X. Li, V. Nallathambi, et al., J. Power Sources 188 (2009) 38–44.
doi: 10.1016/j.jpowsour.2008.11.087
F. Lin, F. Lv, Q. Zhang, et al., Adv. Mater. 34 (2022) 2202084.
doi: 10.1002/adma.202202084
L. Guo, W.J. Jiang, Y. Zhang, et al., ACS Catal. 5 (2015) 2903–2909.
doi: 10.1021/acscatal.5b00117
M. Li, Y. Cai, J. Zhang, et al., Nano Res. 15 (2022) 3230–3238.
doi: 10.1007/s12274-021-3952-4
Y. Hu, X. Guo, T. Shen, Y. Zhu, D. Wang, ACS Catal. 12 (2022) 5380–5387.
doi: 10.1021/acscatal.2c01541
C. Chen, Y. Kang, Z. Huo, et al., Science 343 (2014) 1339–1343.
doi: 10.1126/science.1249061
H. Zhang, P. Shi, X. Ma, et al., Adv. Energy Mater. 13 (2023) 2202703.
doi: 10.1002/aenm.202202703
Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruña, ACS Nano 14 (2020) 13069–13080.
doi: 10.1021/acsnano.0c04559
Y. Li, X.F. Lu, S. Xi, et al., Angew. Chem. Int. Ed. 61 (2022) e202201491.
doi: 10.1002/anie.202201491
R. Gui, H. Cheng, M. Wang, et al., Adv. Mater. 36 (2024) 2307661.
doi: 10.1002/adma.202307661
K. Wang, H. Yang, Q. Wang, et al., Adv. Energy Mater. 13 (2023) 2204371.
doi: 10.1002/aenm.202204371
W. Shi, J. Zhang, X. Dong, et al., Carbon 214 (2023) 118321.
doi: 10.1016/j.carbon.2023.118321
Q. Zhang, T. Shen, M. Song, et al., J. Energy Chem. 86 (2023) 158–166.
doi: 10.1016/j.jechem.2023.07.019
Y. Ding, W. Zhou, J. Gao, F. Sun, G. Zhao, Adv. Mater. Interfaces 8 (2021) 2002091.
doi: 10.1002/admi.202002091
L. Liu, G. Zeng, J. Chen, et al., Nano Energy 49 (2018) 393–402.
doi: 10.5194/piahs-379-393-2018
Y. Hu, T. Shen, X. Zhao, et al., Appl. Catal. B: Environ. 279 (2020) 119370.
doi: 10.1016/j.apcatb.2020.119370
F. Ettingshausen, J. Kleemann, A. Marcu, et al., Fuel Cells 11 (2011) 238–245.
doi: 10.1002/fuce.201000051
A. Zana, J. Speder, N.E.A. Reeler, T. Vosch, M. Arenz, Electrochim. Acta 114 (2013) 455–461.
doi: 10.1016/j.electacta.2013.10.097
Y. Hu, J. Zhang, T. Shen, et al., Small Methods 5 (2021) 2100937.
doi: 10.1002/smtd.202100937
Z. Qiao, S. Hwang, X. Li, et al., Energy Environ. Sci. 12 (2019) 2830–2841.
doi: 10.1039/c9ee01899a
X. Wang, Y. Li, Y. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2107332118.
doi: 10.1073/pnas.2107332118
C. Roth, N. Benker, T. Buhrmester, et al., J. Am. Chem. Soc. 127 (2005) 14607–14615.
doi: 10.1021/ja050139f
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005