Antioxidative strategies of 2D MXenes in aqueous energy storage system
-
* Corresponding authors.
E-mail addresses: yguo@whu.edu.cn (Y. Guo), chunguangk@whu.edu.cn (C. Kuai).
Citation:
Li Li, Xue Ke, Shan Wang, Zhuo Jiang, Yuzheng Guo, Chunguang Kuai. Antioxidative strategies of 2D MXenes in aqueous energy storage system[J]. Chinese Chemical Letters,
;2025, 36(5): 110423.
doi:
10.1016/j.cclet.2024.110423
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, et al., Chem. Rev. 111 (2011) 3577–3613.
doi: 10.1021/cr100290v
C. Li, S. Jin, L.A. Archer, et al., Joule 6 (2022) 1733–1738.
doi: 10.1016/j.joule.2022.06.002
M. Huang, X. Wang, X. Liu, et al., Adv. Mater. 34 (2022) 2105611.
doi: 10.1002/adma.202105611
J. Peng, W. Zhang, S. Wang, et al., Adv. Funct. Mater. 32 (2022) 2111720.
doi: 10.1002/adfm.202111720
Y. Zhu, S. Zheng, P. Lu, et al., Natl. Sci. Rev. 9 (2022) nwac024.
L. Kong, M. Cheng, H. Huang, et al., EnergyChem 4 (2022) 100090.
doi: 10.1016/j.enchem.2022.100090
J. Jia, Y. Zhu, P. Das, et al., J. Materiomics 9 (2023) 1242–1262.
doi: 10.1016/j.jmat.2023.08.013
X. Li, Z. Huang, C.E. Shuck, et al., Nat. Rev. Chem. 6 (2022) 389–404.
doi: 10.1038/s41570-022-00384-8
A. Djire, H. Zhang, J. Liu, et al., ACS Appl. Mater. Interfaces 11 (2019) 11812–11823.
doi: 10.1021/acsami.9b01150
Y. Zhu, S. Wang, J. Ma, et al., Energy Stor. Mater. 51 (2022) 500–526.
T. Zhang, C.E. Shuck, K. Shevchuk, et al., J. Am. Chem. Soc. 145 (2023) 22374–22383.
doi: 10.1021/jacs.3c04712
Y. Zhu, J. Ma, P. Das, et al., Small Meth. 7 (2023) 2201609.
doi: 10.1002/smtd.202201609
Y. Zhao, J. Zhang, X. Guo, et al., Chem. Soc. Rev. 52 (2023) 3215–3264.
doi: 10.1039/d2cs00698g
A. Gentile, S. Marchionna, M. Balordi, et al., ChemElectroChem 9 (2022) e202200891.
doi: 10.1002/celc.202200891
F. Shahzad, M. Alhabeb, C.B. Hatter, et al., Science 353 (2016) 1137–1140.
doi: 10.1126/science.aag2421
X. Xiao, H. Yu, H. Jin, et al., ACS Nano 11 (2017) 2180–2186.
doi: 10.1021/acsnano.6b08534
X. Liu, F. Xu, Z. Li, et al., Coordin. Chem. Rev. 464 (2022) 214544.
doi: 10.1016/j.ccr.2022.214544
F. Cao, Y. Zhang, H. Wang, et al., Adv. Mater. 34 (2022) e2107554.
doi: 10.1002/adma.202107554
M. Han, D. Zhang, C.E. Shuck, et al., Nat. Nanotechnol. 18 (2023) 373–379.
doi: 10.1038/s41565-022-01308-9
A. Vahid Mohammadi, J. Rosen, Y. Gogotsi, Science 372 (2021) eabf1581.
doi: 10.1126/science.abf1581
Z. Zhang, F. Zhang, H. Wang, et al., J. Mater. Chem. C 5 (2017) 10822–10827.
doi: 10.1039/C7TC03652C
Z. Zheng, C. Guo, E. Wang, et al., Inorg. Chem. Front. 8 (2021) 2164–2182.
doi: 10.1039/d1qi00041a
J. Jiang, S. Bai, J. Zou, et al., Nano Res. 15 (2022) 6551–6567.
doi: 10.1007/s12274-022-4312-8
S. Huang, V.N. Mochalin, ACS Nano 14 (2020) 10251–10257.
doi: 10.1021/acsnano.0c03602
R.A. Soomro, P. Zhang, B. Fan, et al., Nano-Micro Lett. 15 (2023) 108.
doi: 10.1007/s40820-023-01069-7
F. Xia, J. Lao, R. Yu, et al., Nanoscale 11 (2019) 23330–23337.
doi: 10.1039/c9nr07236e
P. Hou, Y. Tian, Y. Xie, et al., Angew. Chem. Int. Ed. 62 (2023) e202304205.
doi: 10.1002/anie.202304205
S. Doo, A. Chae, D. Kim, et al., ACS Appl. Mater. Interfaces 13 (2021) 22855–22865.
doi: 10.1021/acsami.1c04663
J. Tang, T.S. Mathis, N. Kurra, et al., Angew. Chem. Int. Ed. 58 (2019) 17849–17855.
doi: 10.1002/anie.201911604
M. Naguib, V.N. Mochalin, M.W. Barsoum, et al., Adv. Mater. 26 (2014) 992–1005.
doi: 10.1002/adma.201304138
J. Zou, J. Wu, Y. Wang, et al., Chem. Soc. Rev. 51 (2022) 2972–2990.
doi: 10.1039/d0cs01487g
W. Peng, M. Luo, X. Xu, et al., Adv. Energy Mater. 10 (2020) 2001364.
doi: 10.1002/aenm.202001364
X. Wang, Z. Wang, J. Qiu, Angew. Chem. Int. Ed. 60 (2021) 26587–26591.
doi: 10.1002/anie.202113981
T.S. Mathis, K. Maleski, A. Goad, et al., ACS Nano 15 (2021) 6420–6429.
doi: 10.1021/acsnano.0c08357
V. Natu, J.L. Hart, M. Sokol, et al., Angew. Chem. Int. Ed. 58 (2019) 12655–12660.
doi: 10.1002/anie.201906138
L. Li, H. Niu, J. Robertson, et al., Electrochim. Acta 439 (2023) 141574.
doi: 10.1016/j.electacta.2022.141574
Y. Fan, L. Li, Y. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2111357.
doi: 10.1002/adfm.202111357
M. Hu, H. Zhang, T. Hu, et al., Chem. Soc. Rev. 49 (2020) 6666–6693.
doi: 10.1039/d0cs00175a
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
M. Naguib, O. Mashtalir, J. Carle, et al., ACS Nano 6 (2012) 1322–1331.
doi: 10.1021/nn204153h
M. Alhabeb, K. Maleski, B. Anasori, et al., Chem. Mater. 29 (2017) 7633–7644.
doi: 10.1021/acs.chemmater.7b02847
A. Feng, Y. Yu, Y. Wang, et al., Mater. Des. 114 (2017) 161–166.
doi: 10.1016/j.matdes.2016.10.053
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, et al., Nature 516 (2014) 78–81.
doi: 10.1038/nature13970
F. Liu, A. Zhou, J. Chen, et al., Appl. Surf. Sci. 416 (2017) 781–789.
doi: 10.1016/j.apsusc.2017.04.239
X. Wang, C. Garnero, G. Rochard, et al., J. Mater. Chem. A 5 (2017) 22012–22023.
doi: 10.1039/C7TA01082F
X. Xie, Y. Xue, L. Li, et al., Nanoscale 6 (2014) 11035–11040.
doi: 10.1039/C4NR02080D
G. Zou, Q. Zhang, C. Fernandez, et al., ACS Nano 11 (2017) 12219–12229.
doi: 10.1021/acsnano.7b05559
T. Li, L. Yao, Q. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 6115–6119.
doi: 10.1002/anie.201800887
S.Y. Pang, Y.T. Wong, S. Yuan, et al., J. Am. Chem. Soc. 141 (2019) 9610–9616.
doi: 10.1021/jacs.9b02578
M.R. Lukatskaya, J. Halim, B. Dyatkin, et al., Angew. Chem. Int. Ed. 53 (2014) 4877–4880.
doi: 10.1002/anie.201402513
W. Sun, S.A. Shah, Y. Chen, et al., J. Mater. Chem. A 5 (2017) 21663–21668.
doi: 10.1039/C7TA05574A
S. Yang, P. Zhang, F. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 15491–15495.
doi: 10.1002/anie.201809662
P. Urbankowski, B. Anasori, T. Makaryan, et al., Nanoscale 8 (2016) 11385–11391.
doi: 10.1039/C6NR02253G
M. Li, J. Lu, K. Luo, et al., J. Am. Chem. Soc. 141 (2019) 4730–4737.
doi: 10.1021/jacs.9b00574
Y. Li, H. Shao, Z. Lin, et al., Nat. Mater. 19 (2020) 894–899.
doi: 10.1038/s41563-020-0657-0
M. Zhang, R. Liang, N. Yang, et al., Adv. Energy Mater. 12 (2021) 2102493.
S. Kajiyama, L. Szabova, H. Iinuma, et al., Adv. Energy Mater. 7 (2017) 1601873.
doi: 10.1002/aenm.201601873
P. Huang, W.Q. Han, Nano-Micro Lett. 15 (2023) 68.
doi: 10.1007/s40820-023-01039-z
V. Kamysbayev, A.S. Filatov, H. Hu, et al., Science 369 (2020) 979–983.
doi: 10.1126/science.aba8311
I.R. Shein, A.L. Ivanovskii, Comp. Mater. Sci. 65 (2012) 104–114.
doi: 10.1016/j.commatsci.2012.07.011
L. Liu, H. Zschiesche, M. Antonietti, et al., Adv. Energy Mater. 13 (2023) 2202709.
doi: 10.1002/aenm.202202709
C. Xu, L. Wang, Z. Liu, et al., Nat. Mater. 14 (2015) 1135–1141.
doi: 10.1038/nmat4374
D. Wang, C. Zhou, A.S. Filatov, et al., Science 379 (2023) 1242–1247.
doi: 10.1126/science.add9204
R.B. Rakhi, B. Ahmed, M.N. Hedhili, et al., Chem. Mater. 27 (2015) 5314–5323.
doi: 10.1021/acs.chemmater.5b01623
X. Wu, Z. Wang, M. Yu, et al., Adv. Mater. 29 (2017) 1607017.
doi: 10.1002/adma.201607017
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, et al., Nat. Syn. 1 (2022) 601–614.
doi: 10.1038/s44160-022-00104-6
M.A. Hope, A.C. Forse, K.J. Griffith, et al., Phys. Chem. Chem. Phys. 18 (2016) 5099–5102.
doi: 10.1039/C6CP00330C
R. Lotfi, M. Naguib, D.E. Yilmaz, et al., J. Mater. Chem. A 6 (2018) 12733–12743.
doi: 10.1039/c8ta01468j
C.J. Zhang, S. Pinilla, N. McEvoy, et al., Chem. Mater. 29 (2017) 4848–4856.
doi: 10.1021/acs.chemmater.7b00745
S. Huang, V.N. Mochalin, Inorg. Chem. 58 (2019) 1958–1966.
doi: 10.1021/acs.inorgchem.8b02890
X. Zhao, A. Vashisth, J.W. Blivin, et al., Adv. Mater. Interfaces 7 (2020) 2000845.
doi: 10.1002/admi.202000845
L. Lorencova, T. Bertok, E. Dosekova, et al., Electrochim. Acta 235 (2017) 471–479.
doi: 10.1016/j.electacta.2017.03.073
K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 30 (2018) 1804779.
doi: 10.1002/adma.201804779
J. Kim, Y. Yoon, S.K. Kim, et al., Adv. Funct. Mater. 31 (2021) 2008722.
doi: 10.1002/adfm.202008722
K. Matthews, T. Zhang, C.E. Shuck, et al., Chem. Mater. 34 (2021) 499–509.
M. Zhang, F. Héraly, M. Yi, et al., Cell Rep. Phys. Sci. 2 (2021) 100449.
doi: 10.1016/j.xcrp.2021.100449
L. Yang, D. Kan, C. Dall’Agnese, et al., J. Mater. Chem. A 9 (2021) 5016–5025.
doi: 10.1039/d0ta11397b
A. Sarycheva, Y. Gogotsi, Chem. Mater. 32 (2020) 3480–3488.
doi: 10.1021/acs.chemmater.0c00359
M. Peng, L. Wang, L. Li, et al., Adv. Funct. Mater. 32 (2022) 2109524.
doi: 10.1002/adfm.202109524
T. Habib, X. Zhao, S.A. Shah, et al., npj 2D Mater. Appl. 3 (2019) 8.
doi: 10.1038/s41699-019-0089-3
J. Halim, K.M. Cook, M. Naguib, et al., Appl. Surf. Sci. 362 (2016) 406–417.
doi: 10.1016/j.apsusc.2015.11.089
M. Ashton, K. Mathew, R.G. Hennig, et al., J. Phys. Chem. C 120 (2016) 3550–3556.
doi: 10.1021/acs.jpcc.5b11887
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.
doi: 10.1038/natrevmats.2016.98
X. Zhao, H. Cao, B.J. Coleman, et al., Adv. Mater. Interfaces 9 (2022) 2200480.
doi: 10.1002/admi.202200480
K. Liang, A. Tabassum, A. Majed, et al., InfoMat 3 (2021) 1422–1430.
doi: 10.1002/inf2.12269
T. Zhang, L. Chang, X. Xiao, Small Meth. 7 (2023) 2201530.
doi: 10.1002/smtd.202201530
T. Hu, Z. Li, M. Hu, et al., J. Phys. Chem. C 121 (2017) 19254–19261.
doi: 10.1021/acs.jpcc.7b05675
T. Hu, J. Wang, H. Zhang, et al., Phys. Chem. Chem. Phys. 17 (2015) 9997–10003.
doi: 10.1039/C4CP05666C
G. Gao, A.P. O’Mullane, A. Du, ACS Catal. 7 (2016) 494–500.
R. Thakur, A. Vahid Mohammadi, J. Moncada, et al., Nanoscale 11 (2019) 10716–10726.
doi: 10.1039/c9nr03020d
D. Kim, T.Y. Ko, H. Kim, et al., ACS Nano 13 (2019) 13818–13828.
doi: 10.1021/acsnano.9b04088
A. Olshtrem, S. Chertopalov, O. Guselnikova, et al., 2D Mater. 8 (2021) 045037.
doi: 10.1088/2053-1583/ac27c0
H. Jing, B. Lyu, Y. Tang, et al., Small Sci. 2 (2022) 2200057.
doi: 10.1002/smsc.202200057
C. Zhou, D. Wang, F. Lagunas, et al., Nat. Chem. 15 (2023) 1722–1729.
doi: 10.1038/s41557-023-01288-w
J. Hadler-Jacobsen, F.H. Fagerli, H. Kaland, et al., ACS Mater. Lett. 3 (2021) 1369–1376.
doi: 10.1021/acsmaterialslett.1c00316
Y. Lee, S.J. Kim, Y. -J. Kim, et al., J. Mater. Chem. A 8 (2020) 573–581.
doi: 10.1039/c9ta07036b
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, et al., Adv. Electron. Mater. 2 (2016) 1600255.
doi: 10.1002/aelm.201600255
M. Seredych, C.E. Shuck, D. Pinto, et al., Chem. Mater. 31 (2019) 3324–3332.
doi: 10.1021/acs.chemmater.9b00397
W. Cui, Z.Y. Hu, R.R. Unocic, et al., Chin. Chem. Lett. 32 (2021) 339–344.
doi: 10.1016/j.cclet.2020.04.024
X. Sang, Y. Xie, M.W. Lin, et al., ACS Nano 10 (2016) 9193–9200.
doi: 10.1021/acsnano.6b05240
R. Ibragimova, P. Rinke, H.P. Komsa, Chem. Mater. 34 (2022) 2896–2906.
doi: 10.1021/acs.chemmater.1c03179
J. Li, R. Qin, L. Yan, et al., Inorg. Chem. 58 (2019) 7285–7294.
doi: 10.1021/acs.inorgchem.9b00329
A. Al-Temimy, K. Prenger, R. Golnak, et al., ACS Appl. Mater. Interfaces 12 (2020) 15087–15094.
doi: 10.1021/acsami.9b22122
L.N. Shi, L.T. Cui, Y.R. Ji, et al., Coordin. Chem. Rev. 469 (2022) 214668.
doi: 10.1016/j.ccr.2022.214668
V. Natu, M. Sokol, L. Verger, et al., J. Phys. Chem. C 122 (2018) 27745–27753.
doi: 10.1021/acs.jpcc.8b08860
C.E. Shuck, M. Han, K. Maleski, et al., ACS Appl. Nano Mater. 2 (2019) 3368–3376.
doi: 10.1021/acsanm.9b00286
V. Kotasthane, Z. Tan, J. Yun, et al., ACS Appl. Nano Mater. 6 (2023) 1093–1105.
doi: 10.1021/acsanm.2c04607
J. Halim, M.R. Lukatskaya, K.M. Cook, et al., Chem. Mater. 26 (2014) 2374–2381.
doi: 10.1021/cm500641a
Q. Zhang, R. Fan, W. Cheng, et al., Adv. Sci. 9 (2022) 2202748.
doi: 10.1002/advs.202202748
M. Shekhirev, J. Busa, C.E. Shuck, et al., ACS Nano 16 (2022) 13695–13703.
doi: 10.1021/acsnano.2c04506
X. Li, X. Ma, H. Zhang, et al., Chem. Eng. J. 455 (2023) 140635.
doi: 10.1016/j.cej.2022.140635
J.L. Hart, K. Hantanasirisakul, A.C. Lang, et al., Nat. Commun. 10 (2019) 522.
doi: 10.1038/s41467-018-08169-8
W.Y. Chen, X. Jiang, S.N. Lai, et al., Nat. Commun. 11 (2020) 1302.
doi: 10.1038/s41467-020-15092-4
J. Choi, M.S. Oh, A. Cho, et al., ACS Nano 17 (2023) 10898–10905.
doi: 10.1021/acsnano.3c02668
J. Ji, L. Zhao, Y. Shen, et al., FlatChem 17 (2019) 100128.
doi: 10.1016/j.flatc.2019.100128
G.S. Lee, T. Yun, H. Kim, et al., ACS Nano 14 (2020) 11722–11732.
doi: 10.1021/acsnano.0c04411
X. Zhao, A. Vashisth, E. Prehn, et al., Matter 1 (2019) 513–526.
doi: 10.1016/j.matt.2019.05.020
Y. Chae, S.J. Kim, S. -Y. Cho, et al., Nanoscale 11 (2019) 8387–8393.
doi: 10.1039/c9nr00084d
T. Wu, P.R.C. Kent, Y. Gogotsi, et al., Chem. Mater. 34 (2022) 4975–4982.
doi: 10.1021/acs.chemmater.2c00224
X.Y. Wang, S.Y. Liao, H.P. Huang, et al., Small Meth. 7 (2023) 2201694.
doi: 10.1002/smtd.202201694
L. Liao, D. Jiang, K. Zheng, et al., Adv. Funct. Mater. 31 (2021) 2103960.
doi: 10.1002/adfm.202103960
K. Li, X. Wang, S. Li, et al., Small 16 (2019) 1906851.
A. Vahid Mohammadi, M. Mojtabavi, N.M. Caffrey, et al., Adv. Mater. 31 (2019) 1806931.
doi: 10.1002/adma.201806931
N.M. Caffrey, Nanoscale 10 (2018) 13520–13530.
doi: 10.1039/c8nr03221a
L. Ding, L. Li, Y. Liu, et al., Nat. Sustain. 3 (2020) 296–302.
doi: 10.1038/s41893-020-0474-0
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Jinhui Xu , Yanting Zhang , Kecheng Wen , Xinyu Wang , Zhiwei Yang , Yuan Huang , Guozhong Zheng , Lupeng Huang , Jing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Yiyang Shen , Zhen Zhang , Ruyi Liang , Tongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021