Citation: Bo-Ran Chang, Lin Deng, Qing-Lian Wu, Wan-Qian Guo, Hui-Ying Xue. A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production[J]. Chinese Chemical Letters, ;2025, 36(7): 110411. doi: 10.1016/j.cclet.2024.110411 shu

A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production

    * Corresponding author.
    E-mail addresses: guowanqian@126.com (W.-Q. Guo),
    xhytibetan@xza.edu.cn (H.-Y. Xue).
    1 These authors contributed equally to this work.
  • Received Date: 15 May 2024
    Revised Date: 20 July 2024
    Accepted Date: 4 September 2024
    Available Online: 6 September 2024

Figures(6)

  • Microbial chain elongation (CE), utilizing anaerobic fermentation for the synthesis of high-value medium chain fatty acids (MCFAs), merges as a promising strategy in resource sustainability. Recently, it has pivoted that the use of different types of additives or accelerantstowards enhancing the products yield and fermentation quality has got much attention, with carbon-based materials emerging as vital facilitators. Based on bibliometrics insights, this paper firstly commences with a comprehensive review of the past two decades' progress in applying carbon-based materials within anaerobic fermentation contexts. Subsequently, the recent advancements made by different research groups in order to enhance the performance of CE systemperformance are reviewed, with particular focus on the application, impact, and underlying mechanisms of carbon-based materials in expediting MCFAs biosynthesis via CE. Finally, the future research direction is prospected, aiming to inform innovative material design and sophisticated technological applications, as well as provide a reference for improving the efficiency of anaerobic fermentation of MCFAs using carbon-based material, thereby contributing to the broader discourse on enhancing sustainability and efficiency in bio-based processes.
  • 加载中
    1. [1]

      Y. Abbas, S.N. Yun, Z.Q. Wang, et al., Renew. Sust. Energ. Rev. 135 (2021) 16.

    2. [2]

      C. Hepburn, Y. Qi, N. Stern, et al., Env. Sci. Ecotechnol. 8 (2021) 8.

    3. [3]

      K. Fang, Y.H. Zhou, S. Wang, et al., Renew. Sust. Energ. Rev. 93 (2018) 719–731.

    4. [4]

      S. Huang, R. Kleerebezem, K. Rabaey, et al., Appl. Microbiol. Biotechnol. 104 (2020) 5119–5131.  doi: 10.1007/s00253-020-10551-w

    5. [5]

      X.D. Shi, L. Wu, W. Wei, et al., Crit. Rev. Environ. Sci. Technol. 52 (2022) 3787–3812.  doi: 10.1080/10643389.2021.1957342

    6. [6]

      S.O. Masebinu, E.T. Akinlabi, E. Muzenda, et al., Renew. Sust. Energ. Rev. 103 (2019) 291–307.

    7. [7]

      J.T. Pan, J.Y. Ma, L.M. Zhai, et al., Bioresour. Technol. 292 (2019) 10.

    8. [8]

      H.X. Wang, J.L. Xu, L.X. Sheng, et al., Energy 165 (2018) 411–418.

    9. [9]

      Y.F. Wang, X.M. Wang, K.X. Zheng, et al., Bioresour. Technol. 364 (2022) 11.

    10. [10]

      L. Li, C. Liu, L.J. Xu, et al., Chemosphere 320 (2023) 10.  doi: 10.3847/1538-4357/acb20b

    11. [11]

      Q.L. Wu, Y. Jiang, Y. Chen, et al., Bioresour. Technol. 340 (2021) 14.

    12. [12]

      B.S. Jeon, C. Moon, B.C. Kim, et al., Enzyme Microb. Technol. 53 (2013) 143–151.

    13. [13]

      L. Zhang, X.P. Wang, Y. Chen, et al., Bioresour. Technol. 374 (2023) 10.  doi: 10.1615/ihtc17.210-390

    14. [14]

      L. Zhang, T.H. Tsui, Y.W. Tong, et al., Bioresour. Technol. 386 (2023) 9.

    15. [15]

      T.H. Tsui, M.C.M. van Loosdrecht, Y.J. Dai, et al., Bioresour. Technol. 369 (2023) 10.

    16. [16]

      C.H. Luo, F. Lü, L.M. Shao, et al., Water Res. 68 (2015) 710–718.

    17. [17]

      S.M. Zhai, M. Li, Y.H. Xiong, et al., Bioresour. Technol. 316 (2020) 8.

    18. [18]

      P. Sharma, U. Melkania, Int. J. Hydrog. Energy 42 (2017) 18865–18874.

    19. [19]

      Y.W. Shen, S. Forrester, J. Koval, et al., J. Clean Prod. 167 (2017) 863–874.

    20. [20]

      L. Qiu, Y.F. Deng, F. Wang, et al., Renew. Sust. Energ. Rev. 115 (2019) 14.

    21. [21]

      Y.H. Liu, P.J. He, L.M. Shao, et al., Water Res. 119 (2017) 150–159.

    22. [22]

      Y.H. Liu, P.J. He, W.H. Han, et al., Renew. Energy 161 (2020) 230–239.

    23. [23]

      D.Y. Li, R. Zhao, X. Peng, et al., Environ. Sci. Pollut. Res. 27 (2020) 2898–2908.  doi: 10.1007/s11356-019-06870-9

    24. [24]

      Y.X. Li, Y. Wang, X. Rui, et al., Scientometrics 112 (2017) 1025–1045.  doi: 10.1007/s11192-017-2421-z

    25. [25]

      Y. Pan, Z.X. Zhi, G.Y. Zhen, et al., Fuel 253 (2019) 40–49.

    26. [26]

      B. Sarapatka, Bioresour. Technol. 49 (1994) 17–23.

    27. [27]

      S.F. Guo, J.T. Pan, L.M. Zhai, et al., Sci. Total Environ. 720 (2020) 9.  doi: 10.30853/filnauki.2020.8.2

    28. [28]

      L.P. Cao, H. Keener, Z.H. Huang, et al., Bioresour. Technol. 299 (2020) 7.

    29. [29]

      N. Handous, H. Gannoun, M. Hamdi, et al., Waste Biomass Valorization 10 (2019) 131–142.  doi: 10.1007/s12649-017-0055-2

    30. [30]

      X.Q. Lu, G.Y. Zhen, M. Chen, et al., Bioresour. Technol. 198 (2015) 691–700.

    31. [31]

      M.A. Khan, H.H. Ngo, W.S. Guo, et al., Bioresour. Technol. 219 (2016) 738–748.

    32. [32]

      C.Y. Dong, J. Chen, Bioresour. Technol. 271 (2019) 174–181.

    33. [33]

      Z.M. Summers, H.E. Fogarty, C. Leang, et al., Science 330 (2010) 1413–1415.  doi: 10.1126/science.1196526

    34. [34]

      S. Tayibi, F. Monlau, A. Bargaz, et al., Renew. Sust. Energ. Rev. 152 (2021) 20.

    35. [35]

      R.P. Ipiales, M.A. de la Rubia, E. Diaz, et al., Energy Fuels 35 (2021) 17032–17050.  doi: 10.1021/acs.energyfuels.1c01681

    36. [36]

      J.L. Chen, R. Ortiz, T.W.J. Steele, et al., Biotechnol. Adv. 32 (2014) 1523–1534.

    37. [37]

      Y. Qin, H. Wang, X. Li, et al., Bioresour. Technol. 245 (2017) 1058–1066.

    38. [38]

      G. Baek, J. Kim, J. Kim, et al., Energies 11 (2018) 18.

    39. [39]

      F. Lü, C.H. Luo, L.M. Shao, et al., Water Res. 90 (2016) 34–43.

    40. [40]

      L. Di, Q.G. Zhang, F. Wang, et al., J. Clean Prod. 375 (2022) 11.

    41. [41]

      H. Liu, X. Li, Z.H. Zhang, et al., Chem. Eng. J. 482 (2024) 12.

    42. [42]

      Z. Wang, C. Chen, X.Y. Zhang, et al., Resour. Conserv. Recycl. 188 (2023) 10.

    43. [43]

      A. Ahmad, R. Ghufran, Q. Nasir, et al., Environ. Technol. Innov. 30 (2023) 15.  doi: 10.57093/metansi.v6i1.178

    44. [44]

      G.J. Wang, Y.X. Chu, J.L. Zhu, et al., Bioresour. Technol. 346 (2022) 11.

    45. [45]

      Y. Li, W.Z. Zhong, Z.F. Ning, et al., Bioresour. Technol. 364 (2022) 8.  doi: 10.1167/tvst.11.2.8

    46. [46]

      Z. Hao, Q.H. Wang, Z.S. Yan, et al., J. Hazard. Mater. 401 (2021) 10.

    47. [47]

      M.T. Agler, C.M. Spirito, J.G. Usack, et al., Energy Environ. Sci. 5 (2012) 8189–8192.  doi: 10.1039/c2ee22101b

    48. [48]

      Q.L. Wu, X. Bao, W.Q. Guo, et al., Biotechnol. Adv. 37 (2019) 599–615.

    49. [49]

      E.J. Steen, Y.S. Kang, G. Bokinsky, et al., Nature 463 (2010) 559–U182.  doi: 10.1038/nature08721

    50. [50]

      M.V. Reddy, A. ElMekawy, D. Pant, Biofuels Bioprod. Biorefining 12 (2018) 966–977.  doi: 10.1002/bbb.1924

    51. [51]

      C.M. Spirito, H. Richter, K. Rabaey, et al., Curr. Opin. Biotechnol. 27 (2014) 115–122.

    52. [52]

      L.T. Angenent, H. Richter, W. Buckel, et al., Environ. Sci. Technol. 50 (2016) 2796–2810.  doi: 10.1021/acs.est.5b04847

    53. [53]

      P. Candry, L. Radic, J. Favere, et al., Water Res. 186 (2020) 9.

    54. [54]

      T.I.M. Grootscholten, K.J.J. Steinbusch, H.V.M. Hamelers, et al., Bioresour. Technol. 135 (2013) 440–445.

    55. [55]

      T.I.M. Grootscholten, D. Strik, K.J.J. Steinbusch, et al., Appl. Energy 116 (2014) 223–229.

    56. [56]

      Y. Wang, W. Wei, S.L. Wu, et al., Environ. Sci. Technol. 54 (2020) 10904–10915.  doi: 10.1021/acs.est.0c03029

    57. [57]

      W.T. Ren, Q.L. Wu, L. Deng, et al., ACS ES & T Eng. 3 (2023) 1649–1660.  doi: 10.1021/acsestengg.3c00189

    58. [58]

      S. Ghysels, S. Buffel, K. Rabaey, et al., Bioresour. Technol. 319 (2021) 10.

    59. [59]

      S.Y. Xiang, Q.L. Wu, W.T. Ren, et al., Chin. Chem. Lett. 34 (2023) 5.  doi: 10.5209/tekn.86616

    60. [60]

      B.T. Wu, R.C. Lin, X. Ning, et al., Bioresour. Technol. 358 (2022) 13.

    61. [61]

      J.W. Ma, Z.S. Wang, L. Li, et al., J. Clean Prod. 365 (2022) 10.  doi: 10.1109/tcs56119.2022.9918744

    62. [62]

      J.W. Ma, L.Y. Tan, S.B. Xie, et al., Environ. Res. 233 (2023) 10.

    63. [63]

      J. Du, P.P. Xu, H.Y. Ren, et al., Bioresour. Technol. 387 (2023) 10.

    64. [64]

      L. Zhao, Z.H. Wang, H.Y. Ren, et al., Bioresour. Technol. 320 (2021) 7.

    65. [65]

      Q.L. Wu, X.C. Feng, Y. Chen, et al., J. Hazard. Mater. 402 (2021) 12.

    66. [66]

      P.X. Yang, X. Li, H.C. Zhuang, et al., J. Environ. Chem. Eng. 12 (2024) 11.

    67. [67]

      F.H. Liu, A.E. Rotaru, P.M. Shrestha, et al., Energy Environ. Sci. 5 (2012) 8982–8989.  doi: 10.1039/c2ee22459c

    68. [68]

      R.C. Lin, C. Deng, J. Cheng, et al., iScience 10 (2018) 158–170.

    69. [69]

      Y. Tao, J.B. Li, J.P. Rui, et al., Appl. Environ. Microbiol. 80 (2014) 2254–2260.

    70. [70]

      S.S. Chen, A.E. Rotaru, P.M. Shrestha, et al., Sci. Rep. 4 (2014) 7.

    71. [71]

      C.A. Contreras-Dávila, N.N. Alemany, C.G.S. Ortiz-de-Montellano, et al., ACS ES & T Eng. 2 (2022) 54–64.  doi: 10.1021/acsestengg.1c00214

    72. [72]

      S.L. Wu, W. Wei, Q.X. Xu, et al., ACS ES & T Wat. 1 (2021) 1014–1024.  doi: 10.1021/acsestwater.0c00278

    73. [73]

      S. Chaturvedi, S.V. Singh, V.C. Dhyani, et al., Biomass Convers. Biorefinery 13 (2023) 879–892.  doi: 10.1007/s13399-020-01239-2

    74. [74]

      G.O. Awe, J.M. Reichert, D. Holthusen, et al., Soil Tillage Res. 212 (2021) 14.

    75. [75]

      M.A. Liang, L. Lu, H.J. He, et al., Sustainability 13 (2021) 18.

    76. [76]

      H. Zhang, A.G. Hay, J. Hazard. Mater. 384 (2020) 8.  doi: 10.3390/quat3010008

    77. [77]

      S. Mohtaram, M.S. Mohtaram, S. Sabbaghi, et al., Energy Conv. Manag. 300 (2024) 24.

  • 加载中
    1. [1]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    2. [2]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    3. [3]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    4. [4]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    5. [5]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    8. [8]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    9. [9]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    10. [10]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    11. [11]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    12. [12]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    13. [13]

      Zhaojing HuangHao LiJiayi LuoShunxing LiMing ZhaoFengjiao LiuHaijiao Xie . Deep learning-based simultaneous bioavailability assessment and speciation analysis of dissolved organic copper. Chinese Chemical Letters, 2025, 36(5): 110209-. doi: 10.1016/j.cclet.2024.110209

    14. [14]

      Fangbing WangQiankun ZengJing RenMin ZhangGuoyue Shi . A membrane-based plasma separator coupled with ratiometric fluorescent sensor for biochemical analysis in whole blood. Chinese Chemical Letters, 2025, 36(7): 110494-. doi: 10.1016/j.cclet.2024.110494

    15. [15]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    16. [16]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    19. [19]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    20. [20]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return