Citation: Yusong Bi, Rongzhen Zhang, Kaikai Niu, Shengsheng Yu, Hui Liu, Lingbao Xing. Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis[J]. Chinese Chemical Letters, ;2025, 36(5): 110311. doi: 10.1016/j.cclet.2024.110311 shu

Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis

    * Corresponding author.
    E-mail addresses: lbxing@sdut.edu.cn (L. Xing).
  • Received Date: 14 May 2024
    Revised Date: 16 July 2024
    Accepted Date: 31 July 2024
    Available Online: 2 August 2024

Figures(6)

  • Achieving artificial simulations of multi-step energy transfer processes and conversions in nature remains a challenge. In this study, we present a three-step sequential energy transfer process, which was constructed through host-guest interactions between a piperazine derivative (PPE-BPI) with aggregation-induced emission (AIE) and cucurbit[7]uril (CB[7]) in water to serve as ideal energy donors. To achieve multi-step sequential energy transfer, we employ three distinct fluorescent dyes Eosin B (EsB), Sulforhodamine 101 (SR101), and Cyanine 5 (Cy5) as energy acceptors. The PPE-PBI-2CB[7]+EsB+SR101+Cy5 system demonstrates a highly efficient three-step sequential energy transfer mechanism, starting with PPE-PBI-2CB[7] and transferring energy successively to EsB, SR101, and finally to Cy5, with remarkable energy transfer efficiencies. More interestingly, with the progressive transfer of energy in the multi-step energy transfer system, the generation efficiency of superoxide anion radical (O2•–) increased gradually, which can be used as photocatalysts for selectively photooxidation of N-phenyltetrahydroisoquinoline in an aqueous medium with a high yield of 86% after irradiation for 18 h. This study offers a valuable investigation into the simulation of multi-step energy transfer processes and transformations in the natural world, paving the way for further research in the field.
  • 加载中
    1. [1]

      H.Q. Peng, L.Y. Niu, Y.Z. Chen, et al., Chem. Rev. 115 (2015) 7502–7542.  doi: 10.1021/cr5007057

    2. [2]

      G. McDermott, S. Prince, A. Freer, et al., Nature 374 (1995) 517–521.

    3. [3]

      G.D. Scholes, G.R. Fleming, A. Olaya-Castro, et al., Nat. Chem. 3 (2011) 763–774.  doi: 10.1038/nchem.1145

    4. [4]

      A.M. van Oijen, M. Ketelaars, J. Köhler, et al., Science 285 (1999) 400–402.

    5. [5]

      O. Dumele, J. Chen, J.V. Passarelli, et al., Adv. Mater. 32 (2020) 1907247.

    6. [6]

      Y.X. Hu, W.J. Li, P.P. Jia, et al., Adv. Opt. Mater. 8 (2020) 2000265.

    7. [7]

      S. Kundu, A. Patra, Chem. Rev. 117 (2017) 712–757.  doi: 10.1021/acs.chemrev.6b00036

    8. [8]

      K. Wang, K. Velmurugan, B. Li, et al., Chem. Commun. 57 (2021) 13641–13654.  doi: 10.1039/d1cc06011b

    9. [9]

      T. Xiao, W. Zhong, L. Zhou, et al., Chin. Chem. Lett. 30 (2019) 31–36.

    10. [10]

      K. Wang, Y. Shen, P. Jeyakkumar, et al., Curr. Opin. Green Sustain. 41 (2023) 100823.

    11. [11]

      X.M. Chen, X. Chen, X.F. Hou, et al., Nanoscale Adv. 5 (2023) 1830–1852.  doi: 10.1039/d2na00934j

    12. [12]

      C.H. Wu, P.Q. Nhien, T.T.K. Cuc, et al., Top Curr. Chem. 381 (2022) 2.

    13. [13]

      D. Bokotial, K. Acharyya, A. Chowdhury, et al., Angew. Chem. Int. Ed. 63 (2024) e202401136.

    14. [14]

      Q. Zhang, H. Qian, T. Xiao, et al., Chin. Chem. Lett. 34 (2023) 108365.

    15. [15]

      T. Xiao, X. Li, L. Zhang, et al., Chin. Chem. Lett. 35 (2024) 108618.

    16. [16]

      Z. Wu, H. Qian, X. Li, et al., Chin. Chem. Lett. 35 (2024) 108829.

    17. [17]

      H.Q. Peng, Y.Z. Chen, Y. Zhao, et al., Angew. Chem. Int. Ed. 51 (2012) 2088–2092.  doi: 10.1002/anie.201107723

    18. [18]

      M. Kownacki, S.M. Langenegger, S.X. Liu, et al., Angew. Chem. Int. Ed. 58 (2019) 751–755.  doi: 10.1002/anie.201809914

    19. [19]

      J.J. Li, Y. Chen, J. Yu, et al., Adv. Mater. 29 (2017) 1701905.

    20. [20]

      Z. Zhang, Z. Zhao, Y. Hou, et al., Angew. Chem. Int. Ed. 58 (2019) 8862–8866.  doi: 10.1002/anie.201904407

    21. [21]

      K. Acharyya, S. Bhattacharyya, H. Sepehrpour, et al., J. Am. Chem. Soc. 141 (2019) 14565–14569.  doi: 10.1021/jacs.9b08403

    22. [22]

      Y. Li, Y. Dong, L. Cheng, et al., J. Am. Chem. Soc. 141 (2019) 8412–8415.  doi: 10.1021/jacs.9b02617

    23. [23]

      C. Vijayakumar, K. Sugiyasu, M. Takeuchi, Chem. Sci. 2 (2011) 291–294.

    24. [24]

      Y. Liu, J. Jin, H. Deng, et al., Angew. Chem. Int. Ed. 55 (2016) 7952–7957.  doi: 10.1002/anie.201601516

    25. [25]

      C.B. Huang, L. Xu, J.L. Zhu, et al., J. Am. Chem. Soc. 139 (2017) 9459–9462.  doi: 10.1021/jacs.7b04659

    26. [26]

      S. Garain, B.C. Garain, M. Eswaramoorthy, et al., Angew. Chem. Int. Ed. 60 (2021) 19720–19724.  doi: 10.1002/anie.202107295

    27. [27]

      L. Xu, Z. Wang, R. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9908–9913.  doi: 10.1002/anie.201907678

    28. [28]

      J. Pruchyathamkorn, W.J. Kendrick, A.T. Frawley, et al., Angew. Chem. Int. Ed. 59 (2020) 16455–16458.  doi: 10.1002/anie.202006644

    29. [29]

      X.M. Chen, Q. Cao, H.K. Bisoyi, et al., Angew. Chem. Int. Ed. 59 (2020) 10493–10497.  doi: 10.1002/anie.202003427

    30. [30]

      H.J. Kim, D.R. Whang, J. Gierschner, et al., Angew. Chem. Int. Ed. 55 (2016) 15915–15919.  doi: 10.1002/anie.201609699

    31. [31]

      S. Guo, Y. Song, Y. He, et al., Angew. Chem. Int. Ed. 57 (2018) 3163–3167.  doi: 10.1002/anie.201800175

    32. [32]

      Z. Xu, S. Peng, Y.Y. Wang, et al., Adv. Mater. 28 (2016) 7666–7671.  doi: 10.1002/adma.201601719

    33. [33]

      S. Yu, R.X. Zhu, K.K. Niu, et al., Chem. Sci. 15 (2024) 1870–1878.  doi: 10.1039/d3sc05820d

    34. [34]

      L.B. Xing, Y. Wang, X.L. Li, et al., Adv. Opt. Mater. 11 (2023) 2201710.

    35. [35]

      Y. Wang, C.Q. Ma, X.L. Li, et al., J. Mater. Chem. A 11 (2023) 2627–2633.  doi: 10.1039/d2ta09227a

    36. [36]

      Y. Wang, N. Han, X.L. Li, et al., ACS Appl. Mater. Interfaces 14 (2022) 45734–45741.  doi: 10.1021/acsami.2c14168

    37. [37]

      Z. Zhang, Z. Zhao, L. Wu, et al., J. Am. Chem. Soc. 142 (2020) 2592–2600.  doi: 10.1021/jacs.9b12689

    38. [38]

      X.H. Wang, N. Song, W. Hou, et al., Adv. Mater. (2019) 1903962.

    39. [39]

      D. Zhang, Y. Liu, Y. Fan, et al., Adv. Funct. Mater. 26 (2016) 7652–7661.  doi: 10.1002/adfm.201603118

    40. [40]

      C. Ma, Y. Wang, N. Han, et al., Chin. Chem. Lett. 35 (2024) 108632.

    41. [41]

      Y. Sun, F. Guo, T. Zuo, et al., Nat. Commun. 7 (2016) 12042.

    42. [42]

      H. Qian, T. Xiao, R. Elmes, et al., Chin. Chem. Lett. 34 (2023) 108185.

    43. [43]

      C. Ma, N. Han, Y. Wang, et al., Chin. Chem. Lett. 34 (2023) 108081.

    44. [44]

      Y. Wang, N. Han, X. Li, et al., ChemPhysMater 1 (2022) 281–293.

    45. [45]

      Z. Wu, H. Qian, X. Li, et al., Chin. Chem. Lett. 35 (2023) 108829.

    46. [46]

      D. Chen, T. Xiao, E. Monflier, et al., Commun. Chem. 7 (2024) 88.

    47. [47]

      L. Ji, Y. Sang, G. Ouyang, et al., Angew. Chem. Int. Ed. 58 (2019) 844–848.  doi: 10.1002/anie.201812642

    48. [48]

      Q. Song, S. Goia, J. Yang, et al., J. Am. Chem. Soc. 143 (2020) 382–389.

    49. [49]

      M. Hao, G. Sun, M. Zuo, et al., Angew. Chem. Int. Ed. 59 (2020) 10095–10100.  doi: 10.1002/anie.201912654

    50. [50]

      P.P. Jia, L. Xu, Y.X. Hu, et al., J. Am. Chem. Soc. 143 (2021) 399–408.  doi: 10.1021/jacs.0c11370

    51. [51]

      D. Zhang, W. Yu, S. Li, et al., J. Am. Chem. Soc. 143 (2021) 1313–1317.  doi: 10.1021/jacs.0c12522

    52. [52]

      Y. Li, C. Xia, R. Tian, et al., ACS Nano 16 (2022) 8012–8021.  doi: 10.1021/acsnano.2c00960

    53. [53]

      M. Suresh, A.K. Mandal, E. Suresh, et al., Chem. Sci. 4 (2013) 2380–2386.  doi: 10.1039/c3sc50282a

    54. [54]

      D. Ren, L. Tang, Z. Wu, et al., Chin. Chem. Lett. 34 (2023) 108617.

    55. [55]

      D. Zhang, M. Li, B. Jiang, et al., J. Colloid Interface Sci. 652 (2023) 1494–1502.

    56. [56]

      X.Y. Yao, S. Yu, R.Z. Zhang, et al., Sci. China Mater. 67 (2024) 833–841.

  • 加载中
    1. [1]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    4. [4]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    7. [7]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    8. [8]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    9. [9]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    10. [10]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    11. [11]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    14. [14]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    15. [15]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    16. [16]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    17. [17]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    18. [18]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    19. [19]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    20. [20]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return