Tailoring mass transfer on electrochemical fixation of air-abundant molecules
-
* Corresponding author.
E-mail address: wutongbo@hust.edu.cn (H. Wang).
Citation:
Xiaoyu Du, Huan Wang. Tailoring mass transfer on electrochemical fixation of air-abundant molecules[J]. Chinese Chemical Letters,
;2025, 36(8): 110276.
doi:
10.1016/j.cclet.2024.110276
Z. Lin, C. Han, G.E.P. O'Connell, et al., Angew. Chem. Int. Ed. 62 (2023) e202301435.
J.G. Chen, R.M. Crooks, L.C. Seefeldt, et al., Science 360 (2018) eaar6611.
N. Tanjedrew, K. Thammanatpong, P. Surawatanawong, et al., Chem. Eur. J. 30 (2024) e202302854.
M.B. Ross, P. De Luna, Y. Li, et al., Nat. Catal. 2 (2019) 648–658.
doi: 10.1038/s41929-019-0306-7
P. Tian, J. Su, Y. Song, et al., Trans. Tianjin Univ. 28 (2022) 73–79.
doi: 10.1007/s12209-021-00305-8
X. Tian, X.F. Lu, B.Y. Xia, et al., Joule 4 (2020) 45–68.
B.M. Ceballos, G. Pilania, K.P. Ramaiyan, et al., Curr. Opin. Electrochem. 28 (2021) 100723.
Z. Wang, Y. Zhou, P. Qiu, et al., Adv. Mater. 35 (2023) 2303052.
X. Wang, J. Zhang, P. Wang, et al., Energy Environ. Sci. 16 (2023) 5500–5512.
doi: 10.1039/d3ee02503a
B. Chang, H. Pang, F. Raziq, et al., Energy Environ. Sci. 16 (2023) 4714–4758.
doi: 10.1039/d3ee00964e
D. Wang, X.F. Lu, D. Luan, et al., Adv. Mater. 36 (2024) 2312645.
M.G. Kibria, J.P. Edwards, C.M. Gabardo, et al., Adv. Mater. 31 (2019) 1807166.
W. Xing, M. Yin, Q. Lv, et al., Oxygen solubility, diffusion coefficient, and solution viscosity, in: W. Xing, G. Yin, J. Zhang Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, Amsterdam, 2014, 1–31.
X. Shen, S. Liu, X. Xia, et al., Adv. Funct. Mater. 32 (2022) 2109422.
T. Burdyny, W.A. Smith, Energy Environ. Sci. 12 (2019) 1442–1453.
doi: 10.1039/c8ee03134g
O.A. Ojelade, S.F. Zaman, B.J. Ni, J. Environ. Manage. 342 (2023) 118348.
I. Staffell, D. Scamman, A. Velazquez Abad, et al., Energy Environ. Sci. 12 (2019) 463–491.
doi: 10.1039/c8ee01157e
W. Lai, Y. Qiao, Y. Wang, et al., Adv. Mater. 35 (2023) 2306288.
Á. Molina, I. Morales, M. López-Tenés, Electrochem. Commun. 8 (2006) 1062–1070.
P. Chauhan, J. Herranz, M. Winzely, et al., J. Phys. Chem. C 127 (2023) 16453–16463.
doi: 10.1021/acs.jpcc.3c04233
N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 36 (2006) 161–172.
doi: 10.1007/s10800-005-9058-y
R. Kas, K. Yang, D. Bohra, et al., Chem. Sci. 11 (2020) 1738–1749.
doi: 10.1039/c9sc05375a
X. Jiang, Y. Chen, X. Zhang, et al., ChemSusChem 15 (2022) e202201551.
S.S. Bhargava, D. Azmoodeh, X. Chen, et al., ACS Energy Lett. 6 (2021) 2427–2433.
doi: 10.1021/acsenergylett.1c01029
J. Pan, P. Li, X. Jiang, et al., Mater. Today Phys. 35 (2023) 101096.
L. Huang, G. Gao, C. Yang, et al., Nat. Commun. 14 (2023) 2958.
G. Wang, J. Chen, Y. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993–5061.
doi: 10.1039/d0cs00071j
R. Battino, T.R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data 13 (1984) 563–600.
E. Hosono, S. Fujihara, I. Honma, et al., J. Mater. Chem. 15 (2005) 1938–1945.
doi: 10.1039/b418955h
S. Kaneco, K. Iiba, H. Katsumata, et al., J. Solid State Electrochem. 11 (2007) 490–495.
doi: 10.1007/s10008-006-0185-0
M. Moura de Salles Pupo, R. Kortlever, ChemPhysChem 20 (2019) 2926–2935.
doi: 10.1002/cphc.201900680
R.N. Itoe, G.D. Wesson, E.E. Kalu, J. Electrochem. Soc. 147 (2000) 2445.
Q. Shi, Y. He, X. Bai, et al., Energy Environ. Sci. 13 (2020) 3544–3555.
doi: 10.1039/d0ee01968b
Y. Ren, C. Yu, X. Han, et al., ACS Energy Lett. 6 (2021) 3844–3850.
doi: 10.1021/acsenergylett.1c01893
D. Krishnamurthy, N. Lazouski, M.L. Gala, et al., ACS Cent. Sci. 7 (2021) 2073–2082.
doi: 10.1021/acscentsci.1c01151
J.L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc. 135 (2013) 8798–8801.
doi: 10.1021/ja4033549
J. Medina-Ramos, R.C. Pupillo, T.P. Keane, et al., J. Am. Chem. Soc. 137 (2015) 5021–5027.
doi: 10.1021/ja5121088
S. Piontek, K. junge Puring, D. Siegmund, et al., Chem. Sci. 10 (2019) 1075–1081.
doi: 10.1039/c8sc03555e
Y. Oh, H. Vrubel, S. Guidoux, et al., Chem. Commun. 50 (2014) 3878–3881.
doi: 10.1039/c3cc49262a
B. Eneau-Innocent, D. Pasquier, F. Ropital, et al., Appl. Catal. B 98 (2010) 65–71.
H.K. Lee, C.S.L. Koh, Y.H. Lee, et al., Sci. Adv. 4 (2018) eaar3208.
T. Mairegger, H. Li, C. Grießer, et al., ACS Catal. 13 (2023) 5780–5786.
doi: 10.1021/acscatal.3c00236
N.E. Mendieta-Reyes, A.K. Díaz-García, R. Gómez, ACS Catal. 8 (2018) 1903–1912.
doi: 10.1021/acscatal.7b03047
G. Lee, Y.C. Li, J.Y. Kim, et al., Nat. Energy 6 (2021) 46–53.
Y. Cui, B. He, X. Liu, et al., Ind. Eng, Chem. Res. 59 (2020) 20235–20252.
doi: 10.1021/acs.iecr.0c04037
Y. Tian, Y. Liu, H. Wang, et al., ACS Sustain. Chem. Eng. 10 (2022) 4345–4358.
doi: 10.1021/acssuschemeng.2c00018
B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, et al., Science 334 (2011) 643–644.
doi: 10.1126/science.1209786
F. Zhou, L.M. Azofra, M. Ali, et al., Energy Environ. Sci. 10 (2017) 2516–2520.
N. Dubouis, A. Serva, R. Berthin, et al., Nat. Catal. 3 (2020) 656–663.
doi: 10.1038/s41929-020-0482-5
S. Garg, M. Li, A.Z. Weber, et al., J. Mater. Chem. A 8 (2020) 1511–1544.
doi: 10.1039/c9ta13298h
P. Li, Y. Jiang, Y. Hu, et al., Nat. Catal. 5 (2022) 900–911.
doi: 10.1038/s41929-022-00846-8
A.H. Shah, Z. Zhang, Z. Huang, et al., Nat. Catal. 5 (2022) 923–933.
doi: 10.1038/s41929-022-00851-x
H. Le, C. Lin, E. Kätelhön, et al., Electrochim. Acta 298 (2019) 778–787.
Y. Liu, H. Jiang, Z. Hou, Chem. Eur. J. 27 (2021) 17726–17735.
doi: 10.1002/chem.202102764
J. Gu, S. Liu, W. Ni, et al., Nat. Catal. 5 (2022) 268–276.
doi: 10.1038/s41929-022-00761-y
I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, et al., Nat. Energy 2 (2017) 17031.
J. Hou, B. Xu, Q. Lu, Nat. Commun. 15 (2024) 1926.
X. Mao, T. He, G. Kour, et al., Chem. Sci. 15 (2024) 3330–3338.
doi: 10.1039/d3sc06471a
H. Lee, H. Ren, J. Am. Chem. Soc. 146 (2024) 11126–11132.
X. Sun, S. Wang, Y. Hou, et al., J. Mater. Chem. A 11 (2023) 13089–13106.
doi: 10.1039/d3ta01903a
B. Zhao, H. Luo, J. Liu, et al., Chin. Chem. Lett. 36 (2025) 109919.
B. Su, M. Zheng, W. Lin, et al., Adv. Energy Mater. 13 (2023) 2203290.
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732–745.
doi: 10.1038/s41560-019-0450-y
Y. Zhai, P. Han, Q. Yun, et al., eScience 2 (2022) 467–485.
J. Yuan, J. Zou, Z. Wu, et al., Nanotechnology 35 (2024) 175402.
doi: 10.1088/1361-6528/ad0301
Z.Y. Zhang, H.B. Wang, F.F. Zhang, et al., Rare Met. 43 (2024) 1513–1523.
doi: 10.1007/s12598-023-02527-2
X. Chen, Y. Zhao, J. Han, et al., Chempluschem 88 (2023) e202200370.
X. Lv, F. Wang, J. Du, et al., Sustain. Energy Fuels 4 (2020) 4469–4472.
doi: 10.1039/d0se00828a
L. Zhang, S. Chen, Y. Dai, et al., ChemCatChem 10 (2018) 925–930.
doi: 10.1002/cctc.201701578
C. Choi, S. Kwon, T. Cheng, et al., Nat. Catal. 3 (2020) 804–812.
doi: 10.1038/s41929-020-00504-x
S. Shen, J. He, X. Peng, et al., J. Mater. Chem. A 6 (2018) 18960–18966.
doi: 10.1039/c8ta04758h
P. Li, Z. Jin, Z. Fang, et al., Angew. Chem. Int. Ed. 59 (2020) 22610–22616.
doi: 10.1002/anie.202011596
S. Liu, L. Song, R. Liu, et al., Small 19 (2023) 2304808.
H. Wang, G. Zhan, C. Tang, et al., ACS Nano 17 (2023) 4790–4799.
doi: 10.1021/acsnano.2c11227
X. Zhang, D. Xue, S. Jiang, et al., InfoMat 4 (2022) e12257.
A. Robb, A. Ozden, R.K. Miao, et al., ACS Appl. Mater. Interfaces 14 (2022) 4155–4162.
doi: 10.1021/acsami.1c21386
H.Q. Liang, S. Zhao, X.M. Hu, et al., ACS Catal. 11 (2021) 958–966.
doi: 10.1021/acscatal.0c03766
T. Kwon, S. Prabhakaran, D.H. Kim, et al., Chem. Eng. J. 485 (2024) 150045.
Z.Z. Niu, F.Y. Gao, X.L. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 8011–8021.
doi: 10.1021/jacs.1c01190
L. Xue, X. Wu, Y. Liu, et al., Nano Res. 15 (2022) 1393–1398.
doi: 10.1007/s12274-021-3675-6
P.P. Yang, M.R. Gao, Chem. Soc. Rev. 52 (2023) 4343–4380.
doi: 10.1039/d2cs00849a
P.P. Yang, X.L. Zhang, F.Y. Gao, et al., J. Am. Chem. Soc. 142 (2020) 6400–6408.
doi: 10.1021/jacs.0c01699
T.T. Zhuang, Y. Pang, Z.Q. Liang, et al., Nat. Catal. 1 (2018) 946–951.
doi: 10.1038/s41929-018-0168-4
M. Nazemi, M.A. El-Sayed, J. Phys. Chem. Lett. 9 (2018) 5160–5166.
doi: 10.1021/acs.jpclett.8b02188
Y. Cheng, H. Lu, K. Zhang, et al., Carbon N Y 128 (2018) 38–45.
M. Liu, Y. Pang, B. Zhang, et al., Nature 537 (2016) 382–386.
doi: 10.1038/nature19060
F.Y. Gao, S.J. Hu, X.L. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 8706–8712.
doi: 10.1002/anie.201912348
C. Li, S. Mou, X. Zhu, et al., Chem. Commun. 55 (2019) 14474–14477.
doi: 10.1039/c9cc08234d
F. Wang, X. Lv, X. Zhu, et al., Chem. Commun. 56 (2020) 2107–2110.
doi: 10.1039/c9cc09803h
J.C. Dong, X.G. Zhang, V. Briega-Martos, et al., Nat. Energy 4 (2019) 60–67.
R.B. Sandberg, J.H. Montoya, K. Chan, et al., Surf. Sci. 654 (2016) 56–62.
Y. Wang, P. Han, X. Lv, et al., Joule 2 (2018) 2551–2582.
D. Bao, Q. Zhang, F.L. Meng, et al., Adv. Mater. 29 (2017) 1604799.
A.M. Gómez-Marín, J.M. Feliu, Catal. Today 244 (2015) 172–176.
Y. Gao, Q. Wu, X. Liang, et al., Adv. Sci. 7 (2020) 1902820.
H. Jin, L. Li, X. Liu, et al., Adv. Mater. 31 (2019) 1902709.
X. Wang, K. Klingan, M. Klingenhof, et al., Nat. Commun. 12 (2021) 794.
J. Du, A. Chen, S. Hou, et al., Carbon Energy 4 (2022) 1274–1284.
doi: 10.1002/cey2.223
C. Du, C. Qiu, Z. Fang, et al., Nano Energy 92 (2022) 106784.
K. Tang, H. Hu, Y. Xiong, et al., Angew. Chem. Int. Ed. 61 (2022) e202202671.
G. Xu, H. Li, A.S.R. Bati, et al., J. Mater. Chem. A 8 (2020) 15875–15883.
doi: 10.1039/d0ta03237a
L. Yan, B. Xie, C. Yang, et al., Adv. Energy Mater. 13 (2023) 2204245.
Q. Chen, X. Wang, Y. Zhou, et al., Adv. Mater. 36 (2024) 2303902.
X. Wang, Q. Chen, Y. Zhou, et al., Nano Res. 17 (2024) 1101–1106.
doi: 10.1007/s12274-023-5910-9
C.T. Dinh, F.P. García de Arquer, D. Sinton, et al., ACS Energy Lett. 3 (2018) 2835–2840.
doi: 10.1021/acsenergylett.8b01734
T. Li, E.W. Lees, Z. Zhang, et al., ACS Energy Lett. 5 (2020) 2624–2630.
doi: 10.1021/acsenergylett.0c01291
F. Li, A. Thevenon, A. Rosas-Hernández, et al., Nature 577 (2020) 509–513.
doi: 10.1038/s41586-019-1782-2
W. Ma, S. Xie, T. Liu, et al., Nat. Catal. 3 (2020) 478–487.
doi: 10.1038/s41929-020-0450-0
J. Li, S. Chen, F. Quan, et al., Chem 6 (2020) 885–901.
doi: 10.3390/polym12040885
L. Zeng, X. Li, S. Chen, et al., Nanoscale 12 (2020) 6029–6036.
doi: 10.1039/c9nr09624h
P. Jeanty, C. Scherer, E. Magori, et al., J. CO2 Util. 24 (2018) 454–462.
M. de Jesus Gálvez-Vázquez, P. Moreno-García, H. Xu, et al., ACS Catal. 10 (2020) 13096–13108.
doi: 10.1021/acscatal.0c03609
R. Jiang, V.S. Parameshwaran, J. Boltersdorf, et al., ACS Appl. Energy Mater. 6 (2023) 10475–10486.
doi: 10.1021/acsaem.3c01605
W. Lee, Y.E. Kim, M.H. Youn, et al., Angew. Chem. Int. Ed. 57 (2018) 6883–6887.
doi: 10.1002/anie.201803501
C. Ampelli, C. Genovese, B.C. Marepally, et al., Faraday Discuss. 183 (2015) 125–145.
C. Genovese, C. Ampelli, S. Perathoner, et al., J. Catal. 308 (2013) 237–249.
B.C. Marepally, C. Ampelli, C. Genovese, et al., ChemSusChem 10 (2017) 4442–4446.
doi: 10.1002/cssc.201701506
Q. Ye, X. Zhao, R. Jin, et al., J. Mater. Chem. A 11 (2023) 21498–21515.
doi: 10.1039/d3ta03757f
F. Habibzadeh, P. Mardle, N. Zhao, et al., Electrochem. Energy Rev. 6 (2023) 26.
G. Li, L. Huang, C. Wei, et al., Angew. Chem. Int. Ed. 63 (2024) e202400414.
J.E. Huang, F. Li, A. Ozden, et al., Science 372 (2021) 1074–1078.
doi: 10.1126/science.abg6582
P.W. Bai, W.P. Liang, Y. Lv, et al., Ind. Eng, Chem. Res. 62 (2023) 21787–21801.
doi: 10.1021/acs.iecr.3c02283
Z. Xing, L. Hu, D.S. Ripatti, et al., Nat. Commun. 12 (2021) 136.
R. Shi, J. Guo, X. Zhang, et al., Nat. Commun. 11 (2020) 3028.
J.Y.T. Kim, P. Zhu, F.Y. Chen, et al., Nat. Catal. 5 (2022) 288–299.
A. Luthfiah, C.W. Lee, ChemCatChem 15 (2023) e202300702.
L. Zhang, S. Hu, X. Zhu, et al., J. Energy Chem. 26 (2017) 593–601.
doi: 10.1007/s11431-016-0558-1
B.D. Cardoso, E.M.S. Castanheira, S. Lanceros-Méndez, et al., Adv. Healthc. Mater. 12 (2023) 2202936.
F. Mei, H. Lin, L. Hu, et al., Smart Mol. 1 (2023) e20220001.
R.S. Jayashree, L. Gancs, E.R. Choban, et al., J. Am. Chem. Soc. 127 (2005) 16758–16759.
doi: 10.1021/ja054599k
H. Liu, Y. Liu, X. Yu, et al., Small 20 (2023) e2309344.
Qiaorui Wang , Dingyun Liang , Zhongwen Zhang , Yalan Yang , Yunran Zhang , Yirong Wang , Lei Liu , Wenfeng Jiang , Muneerah Alomar , Li-Long Zhang . Single-atom catalysts for electrocatalytic nitrogen reduction to ammonia: A review. Chinese Journal of Structural Chemistry, 2025, 44(6): 100599-100599. doi: 10.1016/j.cjsc.2025.100599
Xiaoxi Zhao , Qingyun Dou , Pei Tang , Bingjun Yang , Qunji Xue , Xingbin Yan . In-situ construction of solid electrolyte interphase for stable zinc anode via synergy of electrochemical reduction and chemical precipitation. Chinese Chemical Letters, 2025, 36(11): 110422-. doi: 10.1016/j.cclet.2024.110422
Zekun Zhang , Shiji Li , Qian Zhang , Shanshan Li , Liu Yang , Wei Yan , Hao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742
Jiayu Li , Binli Wang , Yu Luo , Hongyu Wang , Lei Zhang . The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2025, 36(8): 110220-. doi: 10.1016/j.cclet.2024.110220
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Tong Peng , Yupeng Xing , Lan Mu , Chenggang Wang , Ning Zhao , Wenbo Liao , Jianlei Li , Gang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Kangyuan Xie , Tianxiang Fang , Qingli Zhu , Qingyang Xu , Boyu Peng , Guangpeng Wu , Chao Gao , Haocheng Yang , Liping Zhu , Hongqing Liang , Weipu Zhu , Peng Zhang , Qiao Jin , Zhengwei Mao , Kefeng Ren , Yang Zhu , Haoke Zhang , Ziliang Wu , Chao Zhang , Hanying Li . Key progresses of MOE Key laboratory of macromolecular synthesis and functionalization in 2024. Chinese Chemical Letters, 2026, 37(2): 111990-. doi: 10.1016/j.cclet.2025.111990
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Xuning Gao , Nan Piao , Yukun Yan , Jinghao Wang , Haolun Zou , Siqi Guan , Leiying Zeng , Zhenhua Sun , Guangjian Hu , Feng Li . Synergistic fluorinated and non-fluorinated solvents for electrolytes of lithium-ion batteries at low temperatures. Chinese Chemical Letters, 2026, 37(2): 110591-. doi: 10.1016/j.cclet.2024.110591
Renming Liu , Ze Gao , Linglong Hu , Daming Yang , Ming Feng , Dan Luo . Hydrophobic protective layer with ultra-long carbon chain for high-performance aqueous zinc ion batteries. Chinese Chemical Letters, 2026, 37(2): 111491-. doi: 10.1016/j.cclet.2025.111491
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492