Citation: Weiping Guo, Ying Zhu, Hong-Hua Cui, Lingyun Li, Yan Yu, Zhong-Zhen Luo, Zhigang Zou. β-Pb3P2S8: A new optical crystal with exceptional birefringence effect[J]. Chinese Chemical Letters, ;2025, 36(2): 110256. doi: 10.1016/j.cclet.2024.110256 shu

β-Pb3P2S8: A new optical crystal with exceptional birefringence effect

Figures(4)

  • Birefringent crystals play an irreplaceable role in optical systems by adjusting the polarization state of light in optical devices. This work successfully synthesized a new thiophosphate phase of β-Pb3P2S8 through the high-temperature solid-state spontaneous crystallization method. Different from the cubic α-Pb3P2S8, the β-Pb3P2S8 crystallizes in the orthorhombic Pbcn space group. Notably, β-Pb3P2S8 shows a large band gap of 2.37 eV in lead-based chalcogenides, wide infrared transparent window (2.5−15 µm), and excellent thermal stability. Importantly, the experimental birefringence shows the largest value of 0.26@550 nm in chalcogenides, even larger than the commercialized oxide materials. The Barder charge analysis result indicates that the exceptional birefringence effect is mainly from the Pb2+ and S2− in the [PbSn] polyhedrons. Meanwhile, the parallelly arranged polyhedral layers could improve the structural anisotropic. Therefore, this work supports a new method for designing chalcogenides with exceptional birefringence effect in the infrared region.
  • 加载中
    1. [1]

      S. Niu, G. Joe, H. Zhao, et al., Nat. Photonics 12 (2018) 392–396.  doi: 10.1038/s41566-018-0189-1

    2. [2]

      X. Chen, W.G. Lu, J. Tang, et al., Nat. Photonics 15 (2021) 813–816.  doi: 10.1038/s41566-021-00865-0

    3. [3]

      S. Han, A. Tudi, W. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202302025.

    4. [4]

      Z.Y. Xie, L.G. Sun, G.Z. Han, et al., Adv. Mater. 20 (2008) 3601–3604.  doi: 10.1002/adma.200800495

    5. [5]

      Y. Feng, R. Chen, J. He, et al., Nat. Commun. 14 (2023) 6739.

    6. [6]

      S.A. Dereshgi, T.G. Folland, A.A. Murthy, et al., Nat. Commun. 11 (2020) 5771.

    7. [7]

      H.T. Luo, T. Tkaczyk, E.L. Dereniak, et al., Opt. Lett. 31 (2006) 616–618.

    8. [8]

      J.R. DeVore, J. Opt. Soc. Am. 41 (1951) 416–419.

    9. [9]

      G. Ghosh, Opt. Commun. 163 (1999) 95–102.

    10. [10]

      D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B 14 (1997) 3319–3322.

    11. [11]

      Z. Guoqing, X. Jun, C. Xingda, et al., J. Cryst. Growth 191 (1998) 517–519.

    12. [12]

      Y. Chu, H. Wang, T. Abutukadi, et al., Small 19 (2023) e2305074.

    13. [13]

      Z.Z. Luo, C.S. Lin, H.H. Cui, et al., Chem. Mater. 26 (2014) 2743–2749.  doi: 10.1021/cm5006955

    14. [14]

      M.M. Chen, S.H. Zhou, W. Wei, et al., ACS Mater. Lett. 4 (2022) 1264–1269.  doi: 10.1021/acsmaterialslett.2c00409

    15. [15]

      W. Wang, D. Mei, F. Liang, et al., Coord. Chem. Rev. 421 (2020) 213444.

    16. [16]

      W.F. Chen, B.W. Liu, S.M. Pei, et al., Adv. Sci. 10 (2023) 2207630.

    17. [17]

      J.J. Xu, K. Wu, Coord. Chem. Rev. 486 (2023) 215139.

    18. [18]

      J.H. Wu, C.L. Hu, T.K. Jiang, et al., J. Am. Chem. Soc. 145 (2023) 24416–24424.  doi: 10.1021/jacs.3c09566

    19. [19]

      Z. Wang, X. Chen, Y. Song, et al., Angew. Chem. Int. Ed. 62 (2023) e202311086.

    20. [20]

      Y. Li, X. Zhang, J. Zheng, et al., Angew. Chem. Int. Ed. 62 (2023) e202304498.

    21. [21]

      T. Fu, K. Bu, X. Sun, et al., J. Am. Chem. Soc. 145 (2023) 16828–16834.  doi: 10.1021/jacs.3c04971

    22. [22]

      J. Guo, A. Tudi, S. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 24901–24904.  doi: 10.1002/anie.202111604

    23. [23]

      H. Yu, M.L. Nisbet, K.R. Poeppelmeier, J. Am. Chem. Soc. 140 (2018) 8868–8876.  doi: 10.1021/jacs.8b04762

    24. [24]

      Y. Yun, W. Xie, Y. Huang, et al., Chem. Mater. 34 (2022) 5215–5223.  doi: 10.1021/acs.chemmater.2c00869

    25. [25]

      Y. Zhang, Q. Bian, H. Wu, et al., Angew. Chem. Int. Ed. 61 (2022) e202115374.

    26. [26]

      X. Huang, S.H. Yang, X.H. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202206791.

    27. [27]

      Z.Z. Luo, C.S. Lin, H.H. Cui, et al., Chem. Mater. 27 (2015) 914–922.  doi: 10.1021/cm504195x

    28. [28]

      Z. Li, J. Yao, Y. Wu, Cryst. Growth Des. 20 (2020) 7550–7564.  doi: 10.1021/acs.cgd.0c01234

    29. [29]

      B. Ji, E. Guderjahn, K. Wu, et al., PCCP 23 (2021) 23696–23702.  doi: 10.1039/d1cp03624f

    30. [30]

      X. Li, L. Kang, C. Li, et al., J. Mater. Chem. C 3 (2015) 3060–3067.

    31. [31]

      W. Yin, A.K. Iyer, C. Li, et al., J. Solid State Chem. 241 (2016) 131–136.

    32. [32]

      J. Prakash, M.S. Tarasenko, A. Mesbah, et al., Inorg. Chem. 53 (2014) 11626–11632.  doi: 10.1021/ic501795w

    33. [33]

      M.Y. Li, Z. Ma, B. Li, et al., Chem. Mater. 32 (2020) 4331–4339.  doi: 10.1021/acs.chemmater.0c01258

    34. [34]

      Y. Chu, P. Wang, H. Zeng, et al., Chem. Mater. 33 (2021) 6514–6521.  doi: 10.1021/acs.chemmater.1c01982

    35. [35]

      J.X. Zhao, X.M. Jiang, W.F. Chen, et al., Inorg. Chem. Front. 9 (2022) 4624–4631.  doi: 10.1039/d2qi01074g

    36. [36]

      W.F. Chen, X.M. Jiang, S.M. Pei, et al., Sci. China Mater. 66 (2023) 740–747.  doi: 10.1007/s40843-022-2181-4

    37. [37]

      Z. Wang, B.W. Liu, G. -C. Guo, Inorg. Chem. Front. 9 (2022) 6554–6560.  doi: 10.1039/d2qi01569b

    38. [38]

      X. Luo, Z. Li, Y. Guo, et al., J. Solid State Chem. 270 (2019) 674–687.

    39. [39]

      W. Huang, X. Zhang, Y. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202202746.

    40. [40]

      J. Chen, Y. Zhang, H. Wu, et al., Adv. Opt. Mater. 11 (2023) 2202147.

    41. [41]

      P. Wang, Y. Chu, A. Tudi, et al., Adv. Sci. 9 (2022) 2106120.

    42. [42]

      J. Zhou, Z. Fan, K. Zhang, et al., Mater. Horiz. 10 (2023) 619–624.  doi: 10.1039/d2mh01200f

    43. [43]

      K. Ding, H. Wu, Z. Hu, et al., Small 19 (2023) 2302819.

    44. [44]

      L. Luo, L. Wang, J. Chen, et al., J. Am. Chem. Soc. 144 (2022) 21916–21925.  doi: 10.1021/jacs.2c08318

    45. [45]

      J. Wang, H. Wu, H. Yu, et al., Adv. Opt. Mater. 10 (2022) 2102673.

    46. [46]

      R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 36 (1987) 6497–6500.

    47. [47]

      C.S. Lin, A.Y. Zhou, W.D. Cheng, et al., J. Phys. Chem. C 123 (2019) 31183–31189.  doi: 10.1021/acs.jpcc.9b08762

  • 加载中
    1. [1]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    4. [4]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    7. [7]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    8. [8]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    9. [9]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    10. [10]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    11. [11]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    12. [12]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    13. [13]

      Zhongxiong Sun Haili Song Mei-Huan Zhao Yijie Zeng Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429

    14. [14]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    15. [15]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    18. [18]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    19. [19]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    20. [20]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

Metrics
  • PDF Downloads(1)
  • Abstract views(221)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return