Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade
-
* Corresponding author.
E-mail address: le.liu@xjtu.edu.cn (L. Liu).
Citation:
Chonglong He, Yulong Wang, Quan-Xin Li, Zichen Yan, Keyuan Zhang, Shao-Fei Ni, Xin-Hua Duan, Le Liu. Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade[J]. Chinese Chemical Letters,
;2025, 36(5): 110253.
doi:
10.1016/j.cclet.2024.110253
R.N. McDonald, G. Liu, S.S. Stahl, Chem. Rev. 111 (2011) 2981–3019.
doi: 10.1021/cr100371y
C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 41 (2012) 3464.
doi: 10.1039/c2cs15323h
X.H. Ouyang, R. Song, M. Hu, Y. Yang, J.H. Li, Angew. Chem. Int. Ed. 55 (2016) 3187–3191.
doi: 10.1002/anie.201511624
X. Wang, Y.F. Han, X.H. Ouyang, R. Song, J.H. Li, Chem. Commun. 55 (2019) 14637–14640.
doi: 10.1039/c9cc07494e
D.C. Blakemore, L. Castro, I. Churcher, et al., Nat. Chem. 10 (2018) 383–394.
doi: 10.1038/s41557-018-0021-z
K.R. Campos, P.J. Coleman, J.C. Alvarez, et al., Science 363 (2019) eaat0805.
doi: 10.1126/science.aat0805
B. Trost, Science 254 (1991) 1471–1477.
doi: 10.1126/science.1962206
H.M. Huang, P. Bellotti, J. Ma, T. Dalton, F. Glorius, Nat. Rev. Chem. 5 (2021) 301–321.
doi: 10.1038/s41570-021-00266-5
E. Piers, Pure Appl. Chem. 60 (1988) 107–114.
doi: 10.1351/pac198860010107
X. Yu, Q.Y. Meng, C.G. Daniliuc, A. Studer, J. Am. Chem. Soc. 144 (2022) 7072–7079.
doi: 10.1021/jacs.2c01735
Z. Li, L. Jiao, Y. Sun, et al., Angew. Chem. Int. Ed. 59 (2020) 7266–7270.
doi: 10.1002/anie.202001262
A. Link, C. Fischer, C. Sparr, Angew. Chem. Int. Ed. 54 (2015) 12163–12166.
doi: 10.1002/anie.201505414
J.E. Erchinger, R. Hoogesteger, R. Laskar, et al., J. Am. Chem. Soc. 145 (2023) 2364–2374.
doi: 10.1021/jacs.2c11295
L.L. Liao, G.M. Cao, Y.X. Jiang, et al., J. Am. Chem. Soc. 143 (2021) 2812–2821.
doi: 10.1021/jacs.0c11896
H. Li, H. Neumann, M. Beller, X.F. Wu, Angew. Chem. Int. Ed. 53 (2014) 3183–3186.
doi: 10.1002/anie.201311198
J.J. Farndon, T.A. Young, J.F. Bower, J. Am. Chem. Soc. 140 (2018) 17846–17850.
doi: 10.1021/jacs.8b10485
D. Wu, N.A. Fohn, J.W. Bode, Angew. Chem. Int. Ed. 58 (2019) 11058–11062.
doi: 10.1002/anie.201904576
X.Y. Yu, Q.Q. Zhao, J. Chen, W.J. Xiao, J.R. Chen, Acc. Chem. Res. 53 (2020) 1066–1083.
doi: 10.1021/acs.accounts.0c00090
Y. Yuan, A. Lei, Acc. Chem. Res. 52 (2019) 3309–3324.
doi: 10.1021/acs.accounts.9b00512
P. Xiong, H.C. Xu, Acc. Chem. Res. 52 (2019) 3339–3350.
doi: 10.1021/acs.accounts.9b00472
K.L. Skubi, T.R. Blum, T.P. Yoon, Chem. Rev. 116 (2016) 10035–10074.
doi: 10.1021/acs.chemrev.6b00018
J.C. Tellis, C.B. Kelly, D.N. Primer, et al., Acc. Chem. Res. 49 (2016) 1429–1439.
doi: 10.1021/acs.accounts.6b00214
R.C. McAtee, E.J. McClain, C.R.J. Stephenson, Trends Chem. 1 (2019) 111–125.
doi: 10.1016/j.trechm.2019.01.008
W. Lee, I. Park, S. Hong, Sci. China Chem 66 (2023) 1688–1700.
doi: 10.1007/s11426-023-1589-7
M. Kim, Y. Koo, S. Hong, Acc. Chem. Res. 55 (2022) 3043–3056.
doi: 10.1021/acs.accounts.2c00530
B. Lu, Z. Zhang, M. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202309460.
doi: 10.1002/anie.202309460
S. Ohmura, K. Katagiri, H. Kato, et al., J. Am. Chem. Soc. 145 (2023) 15054–15060.
doi: 10.1021/jacs.3c04010
T. Horibe, S. Ohmura, K. Ishihara, J. Am. Chem. Soc. 141 (2019) 1877–1881.
doi: 10.1021/jacs.8b12827
B.G. Cai, C. Empel, W.Z. Yao, R.M. Koenigs, J. Xuan, Angew. Chem. Int. Ed. 62 (2023) e202312031.
doi: 10.1002/anie.202312031
H. Fang, C. Empel, L. Atodiresei, R.M. Koenigs, ACS Catal. 13 (2023) 6445–6451.
doi: 10.1021/acscatal.3c00938
Z.M. Chen, X.M. Zhang, Y.Q. Tu, Chem. Soc. Rev. 44 (2015) 5220–5245.
doi: 10.1039/C4CS00467A
X. Wu, C. Zhu, Acc. Chem. Res. (2020) 1620–1636.
doi: 10.1021/acs.accounts.0c00306
X. Wu, Z. Ma, T. Feng, C. Zhu, Chem. Soc. Rev. 50 (2021) 11577–11613.
doi: 10.1039/d1cs00529d
A.R. Allen, E.A. Noten, C.R.J. Stephenson, Chem. Rev. 122 (2022) 2695–2751.
doi: 10.1021/acs.chemrev.1c00388
T.M. Monos, R.C. McAtee, C.R.J. Stephenson, Science 361 (2018) 1369–1373.
doi: 10.1126/science.aat2117
A.K. Allen, J. Poon, R.C. McAtee, et al., ACS Catal. 12 (2022) 8511–8526.
doi: 10.1021/acscatal.2c02577
E.A. Noten, R.C. McAtee, C.R.J. Stephenson, Chem. Sci. 13 (2022) 6942–6949.
doi: 10.1039/d2sc01228f
J. Yu, Z. Wu, C. Zhu, Angew. Chem. Int. Ed. 57 (2018) 17156–17160.
doi: 10.1002/anie.201811346
M. Wang, H. Zhang, J. Liu, X. Wu, C. Zhu, Angew. Chem. Int. Ed. 58 (2019) 17646–17650.
doi: 10.1002/anie.201910514
X. Zhang, X. Wu, Y. Chen, C. Zhu, Green Chem. 25 (2023) 4234–4238.
doi: 10.1039/d3gc01040f
J. Yu, X. Zhang, X. Wu, et al., Chem 25 (2022) 472–482.
doi: 10.1016/j.chempr.2022.10.020
H. Zhang, M. Wang, X. Wu, C. Zhu, Angew. Chem. Int. Ed. 60 (2021) 3714–3719.
doi: 10.1002/anie.202013089
J. Wang, X. Wu, Z. Cao, et al., Adv. Sci. 11 (2024) 2309022.
doi: 10.1002/advs.202309022
Y. Wei, H. Zhang, X. Wu, C. Zhu, Angew. Chem. Int. Ed. 60 (2021) 20215–20219.
doi: 10.1002/anie.202106145
T. Niu, J. Liu, X. Wu, C. Zhu, Chin. J. Chem. 38 (2020) 803–806.
doi: 10.1002/cjoc.202000088
Y. Chen, X. Wu, S. Yang, C. Zhu, Angew. Chem. Int. Ed. 61 (2022) e202201027.
doi: 10.1002/anie.202201027
C. Hervieu, M.S. Kirillova, Y. Hu, et al., Nat. Chem. 16 (2024) 607–614.
doi: 10.1038/s41557-023-01414-8
C. Hervieu, M.S. Kirillova, T. Suárez, et al., Nat. Chem. 13 (2021) 327–334.
doi: 10.1038/s41557-021-00668-4
C. He, M. Wang, Y. Wang, et al., Sci. China Chem. 67 (2024) 2022–2028.
doi: 10.1007/s11426-023-1930-6
Y. Wang, S. Shen, C. He, et al., Chem. Sci. 14 (2023) 6663–6668.
doi: 10.1039/d3sc01752d
D. Babcock, A.J. Wolfram, J.L. Barney, et al., Chem. Sci. 15 (2024) 4031–4040.
doi: 10.1039/d3sc06476j
Y. Zhou, Q. Jiang, Y. Cheng, et al., Org. Lett. 26 (2024) 2656–2661.
doi: 10.1021/acs.orglett.4c00830
C. He, K. Zhang, D.N. Wang, et al., Org. Lett. 24 (2022) 2767–2771.
doi: 10.1021/acs.orglett.2c00875
K. Zhang, Y. Wang, C. He, et al., Org. Chem. Front. 9 (2022) 5599–5605.
doi: 10.1039/d2qo01035f
C. He, M. Wang, B. Dong, et al., Green Synth. Catal. 5 (2024) 117–212.
doi: 10.1016/j.gresc.2022.12.005
Y. Zhou, L. Zhao, M. Hu, X.H. Duan, L. Liu, Org. Lett. 25 (2023) 5268–5272.
doi: 10.1021/acs.orglett.3c01787
Y. Zheng, Y. You, Q. Shen, et al., Org. Chem. Front. 7 (2020) 2069–2074.
doi: 10.1039/d0qo00497a
S. Kc, R.K. Dhungana, N. Khanal, R. Giri, Angew. Chem. Int. Ed. 59 (2020) 8047–8051.
doi: 10.1002/anie.201913435
N. Katta, Q.Q. Zhao, T. Mandal, O. Reiser, ACS Catal. 12 (2022) 14398–14407.
doi: 10.1021/acscatal.2c04736
T.V.T. Nguyen, A. Bossonnet, M.D. Wodrich, J. Waser, J. Am. Chem. Soc. 145 (2023) 25411–25421.
doi: 10.1021/jacs.3c09789
M. Riener, D.A. Nicewicz, Chem. Sci. 4 (2013) 2625.
doi: 10.1039/c3sc50643f
D. Nicewicz, H. Roth, N. Romero, Synlett 27 (2016) 714–723.
Y. Sakakibara, K. Murakami, ACS Catal. 12 (2022) 1857–1878.
doi: 10.1021/acscatal.1c05318
K. Kwon, R.T. Simons, M. Nandakumar, J.L. Roizen, Chem. Rev. 122 (2021) 2353–2428.
T.M. Nguyen, D.A. Nicewicz, J. Am. Chem. Soc. 135 (2013) 9588–9591.
doi: 10.1021/ja4031616
A.J. Perkowski, D.A. Nicewicz, J. Am. Chem. Soc. 135 (2013) 10334–10337.
doi: 10.1021/ja4057294
T.M. Nguyen, N. Manohar, D.A. Nicewicz, Angew. Chem. Int. Ed. 53 (2014) 6198–6201.
doi: 10.1002/anie.201402443
P.D. Morse, D.A. Nicewicz, Chem. Sci. 6 (2015) 270–274.
doi: 10.1039/C4SC02331E
K.A. Margrey, D.A. Nicewicz, Acc. Chem. Res. 49 (2016) 1997–2006.
doi: 10.1021/acs.accounts.6b00304
J.D. Griffin, C.L. Cavanaugh, D.A. Nicewicz, Angew. Chem. Int. Ed. 56 (2017) 2097–2100.
doi: 10.1002/anie.201610722
T. Chen, M.X. Li, Liu J.Q, Cryst. Growth Des. 18 (2018) 2765–2783.
doi: 10.1021/acs.cgd.7b01503
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Minjun Yin , Yuhui Lin , Manli Zhuang , Wei Xiao , Jie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Wenling Yuan , Fengli Li , Zhe Chen , Qiaoxin Xu , Zhenhua Guan , Nanyu Yao , Zhengxi Hu , Junjun Liu , Yuan Zhou , Ying Ye , Yonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Huashan Huang , Jingze Chen , Luyun Zhang , Hong Yan , Siqi Li , Fen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565