Citation: Wen-Jun Xia, Yong-Jiang Wang, Yun-Fei Cao, Cai Sun, Xin-Xiong Li, Yan-Qiong Sun, Shou-Tian Zheng. A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption[J]. Chinese Chemical Letters, ;2025, 36(2): 110248. doi: 10.1016/j.cclet.2024.110248 shu

A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption

    * Corresponding authors.
    E-mail addresses: sunyq@fzu.edu.cn (Y.-Q. Sun), stzheng@fzu.edu.cn (S.-T. Zheng).
  • Received Date: 5 June 2024
    Revised Date: 25 June 2024
    Accepted Date: 12 July 2024
    Available Online: 14 July 2024

Figures(4)

  • Ln-containing polyoxoniobates (PONbs) have appealing applications in luminescence, information encryption and magnetic fields, but the synthesis of PONbs containing high-nuclearity Ln-O clusters is challenging due to the easy hydrolysis of Ln3+ ions in alkaline environments. In this paper, we are able to integrate CO32− and high-nuclearity Ln-O clusters into PONb to construct an inorganic giant Eu19-embedded PONb H49K16Na13(H2O)63[Eu21O2(OH)7(H2O)5(Nb7O22)10(Nb2O6)2(CO3)18]·91H2O (1), which contains the highest nuclearity Eu-O clusters and the largest number of Eu3+ ions among PONbs. In addition, the film that was prepared by mixing 1 with gelatin and glycerol, exhibits reversible luminescence switching behavior under acid/alkali stimulation and has been used to create a fluorescence-encoded information approach. This work paves a feasible strategy for the construction of high-nuclearity Ln-O cluster-containing PONbs and the expansion of the application of Ln-containing PONbs in information encryption.
  • 加载中
    1. [1]

      R. Arppe, T.J. Sorensen, Nat. Rev. Chem. 1 (2017) 0031.

    2. [2]

      L.E. MacKenzie, R. Pal, Nat. Rev. Chem. 5 (2021) 109–124.

    3. [3]

      Z.Y. Quan, Q. Zhang, H.J. Li, et al., Coord. Chem. Rev. 493 (2023) 215287.

    4. [4]

      Y. Shen, X. Le, Y. Wu, et al., Chem. Soc. Rev. 53 (2024) 606–623.

    5. [5]

      Y. Sun, X.X. Le, S.Y. Zhou, et al., Adv. Mater. 34 (2022) 2201262.

    6. [6]

      C.W. Liu, A.K. Steppert, Y.Z. Liu, et al., Adv. Mater. 35 (2023) 2303120.

    7. [7]

      H.W. Huang, H.T. Li, J.M. Yin, et al., Adv. Mater. 35 (2023) 2211117.

    8. [8]

      Y. Li, J. Sun, M. Chen, et al., Adv. Funct. Mater. 32 (2022) 2205494.

    9. [9]

      Z.C. Zeng, B.L. Huang, X. Wang, et al., Adv. Mater. 32 (2020) 2004506.

    10. [10]

      L.J. Ding, X.D. Wang, J. Am. Chem. Soc. 142 (2020) 13558–13564.

    11. [11]

      H.Q. Zheng, Y. Yang, Z.Y. Wang, et al., Adv. Mater. 35 (2023) 2300177.

    12. [12]

      R. Xiaotian, W. Ota, T. Sato, et al., Angew. Chem. Int. Ed. 62 (2023) e202302550.

    13. [13]

      H. Xu, Z. Zhang, L. Huang, et al., Chem. Eng. J. 450 (2022) 138458.

    14. [14]

      W. Chen, R.Q. Fan, H.J. Zhang, et al., Dalton Trans. 46 (2017) 4265–4277.

    15. [15]

      J.C.G. Bünzli, Eur. J. Inorg. Chem. 2017 (2017) 5058–5063.

    16. [16]

      S.V. Eliseeva, J.C.G. Bünzli, Chem. Soc. Rev. 39 (2010) 189–227.

    17. [17]

      T. Yamase, Chem. Rev. 98 (1998) 307–325.

    18. [18]

      D.L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 49 (2010) 1736–1758.

    19. [19]

      Z. Zeb, Y. Huang, L. Chen, et al., Coord. Chem. Rev. 482 (2023) 215058.

    20. [20]

      Y. Zhang, Y. Liu, D. Wang, et al., Polyoxometalates 2 (2023) 9140017.

    21. [21]

      Y. Tai, W. Sun, D. Yao, et al., Polyoxometalates 3 (2024) 9140051.

    22. [22]

      D.H. Li, X.Y. Zhang, J.Q. Lv, et al., Angew. Chem. Int. Ed. 62 (2023) e202312706.

    23. [23]

      H.P. Xiao, Y.S. Hao, X.X. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202210019.

    24. [24]

      N. Song, M. Lu, J. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202319700.

    25. [25]

      X. Liu, L. Cui, J. Jiang, et al., Chin. Chem. Lett. 33 (2022) 2630–2634.

    26. [26]

      M. Aureliano, N.I. Gumerova, G. Sciortino, et al., Coord. Chem. Rev. 447 (2021) 214143.

    27. [27]

      I. Lindqvist, Ark. Kemi. 5 (1953) 247–250.

    28. [28]

      L. Shen, C.H. Li, Y.N. Chi, et al., Inorg. Chem. Commun. 11 (2008) 992–994.

    29. [29]

      P. Huang, C. Qin, Z.M. Su, et al., J. Am. Chem. Soc. 134 (2012) 14004–14010.

    30. [30]

      L. Jin, Z.K. Zhu, Y.L. Wu, et al., Angew. Chem. Int. Ed. 56 (2017) 16288–16292.

    31. [31]

      Y.L. Wu, X.X. Li, Y.J. Qi, et al., Angew. Chem. Int. Ed. 57 (2018) 8572–8576.

    32. [32]

      Z.W. Guo, L.H. Lin, J.P. Ye, et al., Angew. Chem. Int. Ed. 62 (2023) e202305260.

    33. [33]

      Z. -W. Guo, Y. Chen, Z. -H. Chen, et al., Chin. Chem. Lett. 35 (2024) 109124.

    34. [34]

      J.Y. Niu, P.T. Ma, H.Y. Niu, et al., Chem. Eur. J. 13 (2007) 8739–8748.

    35. [35]

      Z.J. Liang, D.D. Zhang, H.Y. Wang, et al., Dalton Trans. 45 (2016) 16173–16176.

    36. [36]

      M. Baranov, L. Polin, N. Leffler, et al., Dalton Trans. 51 (2022) 8600–8604.

    37. [37]

      S. Yang, T.T. Gong, Y.C. Dai, et al., Inorg. Chem. 62 (2023) 17861–17869.

    38. [38]

      Y.J. Wang, S.Y. Wu, Y.Q. Sun, et al., Chem. Commun. 55 (2019) 2857–2860.

    39. [39]

      H.Y. Zhao, Y.Z. Li, J.W. Zhao, et al., Coord. Chem. Rev. 443 (2021) 213966.

    40. [40]

      Y.F. Liu, C.W. Hu, G.P. Yang, Chin. Chem. Lett. 34 (2023) 108097.

    41. [41]

      Z. Li, X.X. Li, T. Yang, et al., Angew. Chem. Int. Ed. 56 (2017) 2664–2669.

    42. [42]

      Z. Li, Z.H. Lv, H. Yu, et al., CCS Chem. 4 (2022) 2938–2945.

    43. [43]

      R.D. Lai, J. Zhang, X.X. Li, et al., J. Am. Chem. Soc. 144 (2022) 19603–19610.

    44. [44]

      Z.K. Zhu, Y.Y. Lin, R.D. Lai, et al., Chin. Chem. Lett. 34 (2023) 107773.

    45. [45]

      H. Yu, Y.D. Lin, S.L. Huang, et al., Angew. Chem. Int. Ed. 62 (2023) e202302111.

    46. [46]

      H. Yu, Y.D. Lin, Z.Y. Liu, et al., Inorg. Chem. 61 (2022) 8112–8116.

    47. [47]

      T. Yamase, Handb. Phys. Chem. Rare Earths 39 (2009) 297–356.

    48. [48]

      Z. Yang, B. Yan, X. Li, et al., Inorg. Chem. 61 (2022) 12181–12189.

    49. [49]

      J. Zhang, L.N. Wang, X.F. Chen, et al., Acta Phys. Chim Sin. 36 (2020) 1912002.

    50. [50]

      Y.X. Guo, Y.J. Gong, Y.A. Gao, et al., Langmuir 32 (2016) 9293–9300.

    51. [51]

      J. Yang, M. Chen, P. Li, et al., Sens. Actuator. B 273 (2018) 153–158.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    4. [4]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    5. [5]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    6. [6]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    7. [7]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    8. [8]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    9. [9]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    10. [10]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    11. [11]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    14. [14]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    15. [15]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    18. [18]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    19. [19]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    20. [20]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

Metrics
  • PDF Downloads(0)
  • Abstract views(182)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return