Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis
-
* Corresponding author.
E-mail address: wangmy@nju.edu.cn (M. Wang).
Citation:
Jieshuai Xiao, Yuan Zheng, Yue Zhao, Zhuangzhi Shi, Minyan Wang. Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis[J]. Chinese Chemical Letters,
;2025, 36(5): 110243.
doi:
10.1016/j.cclet.2024.110243
J. Bergman, J.O. Lindstrom, U. Tilstam, Tetrahedron 41 (1985) 2879–2881.
doi: 10.1016/S0040-4020(01)96609-8
I. Chiyanzu, E. Hansell, J. Gut, et al., Bioorg. Med. Chem. Lett. 13 (2003) 3527–3530.
doi: 10.1016/S0960-894X(03)00756-X
C.V. Galliford, K.A. Scheidt, Angew. Chem. Int. Ed. 46 (2007) 8748–8758.
doi: 10.1002/anie.200701342
B. Tan, N.R. Candeias, C.F. Barbas Ⅲ, Nat. Chem. 3 (2011) 473–477.
doi: 10.1038/nchem.1039
L. Hong, R. Wang, Adv. Synth. Catal. 355 (2013) 1023–1052.
doi: 10.1002/adsc.201200808
B.M. Trost, D.A. Bringley, T. Zhang, N. Cramer, J. Am. Chem. Soc. 135 (2013) 16720–16735.
doi: 10.1021/ja409013m
Y. Zhao, L. Liu, W. Sun, et al., J. Am. Chem. Soc. 135 (2013) 7223–7234.
doi: 10.1021/ja3125417
B. Yu, D. Yu, H. Liu, Eur. J. Med. Chem. 97 (2015) 673–698.
doi: 10.1016/j.ejmech.2014.06.056
B. Yu, Z. Yu, P.P. Qi, D.Q. Yu, H.M. Liu, Eur. J. Med. Chem. 95 (2015) 35–40.
doi: 10.1016/j.ejmech.2015.03.020
G.S. Singh, Z.Y. Desta, Chem. Rev. 112 (2012) 6104–6155.
doi: 10.1021/cr300135y
R. Zeng, G. Dong, J. Am. Chem. Soc. 137 (2015) 1408–1411.
doi: 10.1021/ja512306a
X.C. Qiao, S.F. Zhu, Q.L. Zhou, Tetrahedron: Asymmetry 20 (2009) 1254–1261.
doi: 10.1016/j.tetasy.2009.04.012
K. Zheng, C. Yin, X. Liu, et al., Angew. Chem. Int. Ed. 50 (2011) 2573–2577.
doi: 10.1002/anie.201007145
S. Periyaraja, A.B. Mandal, P. Shanmugam, Org. Lett. 13 (2011) 4980–4983.
doi: 10.1021/ol2022164
J. Guang, Q. Guo, J.C. Zhao, Org. Lett. 14 (2012) 3174–3177.
doi: 10.1021/ol301270w
G.W. Wang, A.X. Zhou, J.J. Wang, R.B. Hu, S.D. Yang, Org. Lett. 14 (2012) 2218–2221.
doi: 10.1080/00103624.2012.701684
G.W. Wang, A.X. Zhou, J.J. Wang, R.B. Hu, S.D. Yang, Org. Lett. 15 (2013) 5270–5273.
doi: 10.1021/ol402494e
D. Cheng, Y. Ishihara, B. Tan, C.F. Barbas, ACS Catal. 4 (2014) 743–762.
doi: 10.1021/cs401172r
Y. Kuang, Y. Lu, Y. Tang, et al., Org. Lett. 16 (2014) 4244–4247.
doi: 10.1021/ol501941n
K. Pratap, A. Kumar, Org. Lett. 20 (2018) 7451–7454.
doi: 10.1021/acs.orglett.8b03196
Y. Liu, Y.T. Xia, S.H. Cui, Y.G. Ji, L. Wu, Adv. Synth. Catal. 362 (2020) 2632–2636.
doi: 10.1002/adsc.202000266
J. Khan, A. Tyagi, N. Yadav, R. Mahato, C.K. Hazra, J. Org. Chem. 86 (2021) 17833–17847.
doi: 10.1021/acs.joc.1c02058
B. Yu, H. Xing, D.Q. Yu, H.M. Liu, Beilstein J. Org. Chem. 12 (2016) 1000–1039.
doi: 10.3762/bjoc.12.98
S. Um, D.H. Bach, B. Shin, et al., Org. Lett. 18 (2016) 5792–5795.
doi: 10.1021/acs.orglett.6b02555
T. Tokunaga, W.E. Hume, T. Umezome, et al., J. Med. Chem. 44 (2001) 4641–4649.
doi: 10.1021/jm0103763
K.C. Nicolaou, M. Bella, D.Y.K. Chen, et al., Angew. Chem. Int. Ed. 41 (2002) 3495–3499.
doi: 10.1002/1521-3773(20020916)41:18<3495::AID-ANIE3495>3.0.CO;2-7
A.W.G. Burgett, Q. Li, Q. Wei, P.G. Harran, Angew. Chem. Int. Ed. 42 (2003) 4961–4966.
doi: 10.1002/anie.200352577
K.C. Nicolaou, M. Bella, D.Y.K. Chen, et al., J. Am. Chem. Soc. 126 (2004) 12888–12896.
doi: 10.1021/ja040092i
R.R. Knowles, J. Carpenter, S.B. Blakey, et al., Chem. Sci. 2 (2011) 308–311.
doi: 10.1039/C0SC00577K
R. Shintani, M. Inoue, T. Hayashi, Angew. Chem. Int. Ed. 45 (2006) 3353–3356.
doi: 10.1002/anie.200600392
S. Lu, S.B. Poh, W.Y. Siau, Y. Zhao, Angew. Chem. Int. Ed. 52 (2013) 1731–1734.
doi: 10.1002/anie.201209043
H. Lai, Z. Huang, Q. Wu, Y. Qin, J. Org. Chem. 74 (2009) 283–288.
doi: 10.1021/jo802036m
R. Shintani, K. Takatsu, T. Hayashi, Chem. Commun. 46 (2010) 6822–6824.
doi: 10.1039/c0cc01635g
J. Zhang, J. Chen, J. Ding, M. Liu, H. Wu, Tetrahedron 67 (2011) 9347–9351.
doi: 10.1016/j.tet.2011.09.135
Z. Liu, P. Gu, M. Shi, P. McDowell, G. Li, Org. Lett. 13 (2011) 2314–2317.
doi: 10.1021/ol200566s
Y. Yamamoto, M. Yohda, T. Shirai, H. Ito, N. Miyaura, Chem. Asian J. 7 (2012) 2446–2449.
doi: 10.1002/asia.201200481
J. Gui, G. Chen, P. Cao, J. Liao, Tetrahedron Asymmetry 23 (2012) 554–563.
doi: 10.1016/j.tetasy.2012.04.013
Y. Zhuang, Y. He, Z. Zhou, et al., J. Org. Chem. 80 (2015) 6968–6975.
doi: 10.1021/acs.joc.5b00595
J. Totobenazara, P. Bacalhau, A.A.S. Juan, et al., ChemistrySelect 1 (2016) 3580–3588.
doi: 10.1002/slct.201600932
C.S. Marques, A.J. Burke, ChemCatChem 8 (2016) 3518–3526.
doi: 10.1002/cctc.201600901
Y.Y. Zhang, H. Chen, X. Jiang, et al., Tetrahedron 74 (2018) 2245–2250.
doi: 10.1016/j.tet.2018.03.039
W. Guo, S. Zhan, H. Yang, Z. Gu, Org. Lett. 25 (2023) 3281–3286.
doi: 10.1021/acs.orglett.3c01028
D. Tomita, K. Yamatsugu, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 131 (2009) 6946–6948.
doi: 10.1021/ja901995a
X.A.F. Cook, A. de Gombert, J. McKnight, L.R.E. Pantaine, M.C. Willis, Angew. Chem. Int. Ed. 60 (2021) 11068–11091.
doi: 10.1002/anie.202010631
Y. Okude, S. Hirano, T. Hiyama, H. Nozaki, J. Am. Chem. Soc. 99 (1977) 3179–3181.
doi: 10.1021/ja00451a061
H. Jin, J. Uenishi, W.J. Christ, Y. Kishi, J. Am. Chem. Soc. 108 (1986) 5644–5646.
doi: 10.1021/ja00278a057
D.A. Everson, D.J. Weix, J. Org. Chem. 79 (2014) 4793–4798.
doi: 10.1021/jo500507s
C.E.I. Knappke, S. Grupe, D. Gartner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2 (2015) 1411–1421.
doi: 10.1039/C5QO00224A
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
W. Xue, X. Jia, X. Wang, et al., Chem. Soc. Rev. 50 (2021) 4162–4184.
doi: 10.1039/d0cs01107j
A. Duan, F. Xiao, Y. Lan, L. Niu, Chem. Soc. Rev. 51 (2022) 9986–10015.
doi: 10.1039/d2cs00371f
X. Pang, P.F. Su, X.Z. Shu, Acc. Chem. Res. 55 (2022) 2491–2509.
doi: 10.1021/acs.accounts.2c00381
L. Xi, L. Du, Z. Shi, Chin. Chem. Lett. 33 (2022) 4287–4292.
doi: 10.1016/j.cclet.2022.01.077
Y. Dai, F. Wang, S. Zhu, L. Chu, Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
A. Nasim, G.T. Thomas, J.S. Ovens, et al., Org. Lett. 24 (2022) 7232–7236.
doi: 10.1021/acs.orglett.2c03042
H. Chang, M. Jeganmohan, C. Cheng, Chem. Eur. J. 13 (2007) 4356–4363.
doi: 10.1002/chem.200601880
H. Tao Jia, Q.S. Tian, J.N. Xiang, G.Z. Zhang, Chin. Chem. Lett. 28 (2017) 1182–1184.
doi: 10.1016/j.cclet.2017.03.016
Z. Zhu, J. Xiao, M. Li, Z. Shi, Angew. Chem. Int. Ed. 61 (2022) e202201370.
doi: 10.1002/anie.202201370
S. Zhang, S. Perveen, Y. Ouyang, et al., Angew. Chem. Int. Ed. 61 (2022) e202117843.
doi: 10.1002/anie.202117843
X. Jiang, H. Jiang, Q. Yang, et al., J. Am. Chem. Soc. 144 (2022) 8347–8354.
doi: 10.1021/jacs.2c02481
L. Zhang, M. Zhao, M. Pu, et al., J. Am. Chem. Soc. 144 (2022) 20249–20257.
doi: 10.1021/jacs.2c05678
J. Xiao, M. Wang, X. Yin, et al., Angew. Chem. Int. Ed. 62 (2023) e202300743.
doi: 10.1002/anie.202300743
H. Jiang, X.K. He, X. Jiang, et al., J. Am. Chem. Soc. 145 (2023) 6944–6952.
doi: 10.1021/jacs.3c00462
L. Zhang, X. Wang, M. Pu, et al., J. Am. Chem. Soc. 145 (2023) 8498–8509.
doi: 10.1021/jacs.3c00548
T. Liang, Y. Wu, J. Sun, et al., Chin. J. Chem. 41 (2023) 3253–3260.
doi: 10.1002/cjoc.202300398
L.J. Li, Y. He, Y. Yang, et al., CCS Chem. 6 (2024) 537–584.
doi: 10.31635/ccschem.023.202303412
C.H. Wei, S. Mannathan, C.H. Cheng, J. Am. Chem. Soc. 133 (2011) 6942–6944.
doi: 10.1021/ja201827j
T. Sawano, A. Ashouri, T. Nishimura, T. Hayashi, J. Am. Chem. Soc. 134 (2012) 18936–18939.
doi: 10.1021/ja309756k
K. Duvvuri, K.R. Dewese, M.M. Parsutkar, et al., J. Am. Chem. Soc. 141 (2019) 7365–7375.
doi: 10.1021/jacs.8b13812
Y.L. Li, S.Q. Zhang, J. Chen, J.B. Xia, J. Am. Chem. Soc. 143 (2021) 7306–7313.
doi: 10.1021/jacs.1c03527
K. Cui, Y.L. Li, G. Li, J.B. Xia, J. Am. Chem. Soc. 144 (2022) 23001–23009.
doi: 10.1021/jacs.2c10021
P. Yang, Q. Wang, B.H. Cui, et al., J. Am. Chem. Soc. 144 (2022) 1087–1093.
doi: 10.1021/jacs.1c11092
X. Jiang, W. Xiong, S. Deng, et al., Nat. Catal. 5 (2022) 788–797.
doi: 10.1038/s41929-022-00831-1
A. Li, X. Song, Q. Ren, et al., Angew. Chem. Int. Ed. 62 (2023) e202301091.
doi: 10.1002/anie.202301091
W. Xiong, X. Jiang, W.C. Wang, et al., J. Am. Chem. Soc. 145 (2023) 7983–7991.
doi: 10.1021/jacs.2c13538
Z.L. Zhang, Z. Li, Y.T. Xu, et al., Angew. Chem. Int. Ed. 62 (2023) e202306381.
doi: 10.1002/anie.202306381
W. Huang, J. Bai, Y. Guo, Q, Chong, F. Meng, Angew. Chem. Int. Ed. 62 (2023) e202219257.
doi: 10.1002/anie.202219257
Z. Liang, L. Wang, Y. Wang, et al., J. Am. Chem. Soc. 145 (2023) 3588–3598.
doi: 10.1021/jacs.2c12475
H. Wang, X. Jie, Q. Chong, F. Meng, Nat. Commun. 15 (2024) 3427.
doi: 10.1038/s41467-024-47719-1
L. Wang, Y. Tong, X. Lu, Y. Fu, Chin. Chem. Lett. 35 (2024) 109283.
doi: 10.1016/j.cclet.2023.109283
M. Aresta, M. Rossi, A. Sacco, Inorg. Chim. Acta 3 (1969) 227–231.
doi: 10.1016/S0020-1693(00)92484-8
K. Heinze, G. Huttner, L. Zsolnai, P. Schober, Inorg. Chem. 36 (1997) 5457–5469.
doi: 10.1021/ic9705352
M. Gray, M.T. Hines, M.M. Parsutkar, et al., ACS Catal. 10 (2020) 4337–4348.
doi: 10.1021/acscatal.9b05455
L. Wang, L. Wang, M. Li, Q. Chong, F. Meng, J. Am. Chem. Soc. 143 (2021) 12755–12765.
doi: 10.1021/jacs.1c05690
M.R. Friedfeld, H. Zhong, R.T. Ruck, M. Shevlin, P.J. Chirik, Science 360 (2018) 888–893.
doi: 10.1126/science.aar6117
H. Zhong, M.R. Friedfeld, P.J. Chirik, Angew. Chem. Int. Ed. 58 (2019) 9194–9198.
doi: 10.1002/anie.201903766
D. Guillaneux, S. Zhao, O. Samuel, D. Rainford, H.B. Kagan, J. Am. Chem. Soc. 116 (1994) 9430–9439.
doi: 10.1021/ja00100a004
C. Girard, H.B. Kagan, Angew. Chem. Int. Ed. 37 (1998) 2922–2959.
doi: 10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1
X. Lu, Y. Wang, B. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 12632–12637.
doi: 10.1021/jacs.7b06469
J. Sheng, H.Q. Ni, S.X. Ni, et al., Angew. Chem. Int. Ed. 60 (2021) 15020–15027.
doi: 10.1002/anie.202102481
T. Lu, Q. Chen, J. Comput. Chem. 43 (2022) 539–555.
doi: 10.1002/jcc.26812
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Yutong Xiong , Ting Meng , Wendi Luo , Bin Tu , Shuai Wang , Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Chonglong He , Yulong Wang , Quan-Xin Li , Zichen Yan , Keyuan Zhang , Shao-Fei Ni , Xin-Hua Duan , Le Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515