Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism
-
* Corresponding author.
E-mail address: zjing428@163.com (J. Zhang).
Citation:
Jinhui Xu, Yanting Zhang, Kecheng Wen, Xinyu Wang, Zhiwei Yang, Yuan Huang, Guozhong Zheng, Lupeng Huang, Jing Zhang. Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism[J]. Chinese Chemical Letters,
;2025, 36(5): 110240.
doi:
10.1016/j.cclet.2024.110240
A.A. Horton, A. Walton, D.J. Spurgeon, et al., Sci. Total Environ. 586 (2017) 127–141.
doi: 10.1016/j.scitotenv.2017.01.190
T. Wang, X. Zou, B. Li, et al., Environ. Pollut. 245 (2019) 965–974.
doi: 10.1016/j.envpol.2018.10.110
S.B. Kurniawan, N.S.M. Said, M.F. Imron, et al., Environ. Technol. Innov. 23 (2021) 101790.
doi: 10.1016/j.eti.2021.101790
K. Duis, A. Coors, Environ. Sci. Eur. 28 (2016) 2.
doi: 10.1186/s12302-015-0069-y
O.S. Alimi, J. Farner Budarz, L.M. Hernandez, et al., Environ. Sci. Technol. 52 (2018) 1704–1724.
doi: 10.1021/acs.est.7b05559
B. Zhang, Q. Wu, S. Gao, et al., Environ. Pollut. 320 (2023) 121076.
doi: 10.1016/j.envpol.2023.121076
A. Yaseen, I. Assad, M.S. Sofi, et al., Environ. Res. 212 (2022) 113258.
doi: 10.1016/j.envres.2022.113258
X. Wang, K. Deng, P. Zhang, et al., Sci. Total Environ. 919 (2024) 170962.
doi: 10.1016/j.scitotenv.2024.170962
H. Ye, Q. Li, J. Li, et al., Chin. Chem. Lett. 36 (2025) 109861.
doi: 10.1016/j.cclet.2024.109861
S.R. Balabantaray, P.K. Singh, A.K. Pandey, et al., Environ. Sci. Pollut. R. 30 (2023) 123039–123054.
doi: 10.1007/s11356-023-30799-9
J.P. Da Costa, P.S.M. Santos, A.C. Duarte, et al., Sci. Total Environ. 566-567 (2016) 15–26.
doi: 10.1016/j.scitotenv.2016.05.041
D.M. Mitrano, P. Wick, B. Nowack, Nat. Nanotechnol. 16 (2021) 491–500.
doi: 10.1038/s41565-021-00888-2
Z. Song, X. Yang, F. Chen, et al., Sci. Total Environ. 669 (2019) 120–128.
doi: 10.1016/j.scitotenv.2019.03.102
M. Shen, Y. Zhang, Y. Zhu, et al., Environ. Pollut. 252 (2019) 511–521.
doi: 10.1016/j.envpol.2019.05.102
S. Dai, R. Ye, J. Huang, et al., J. Nanobiotechnol. 20 (2022) 191.
doi: 10.1186/s12951-022-01321-z
Z. Liu, A. Sokratian, A.M. Duda, et al., Sci. Adv. 9 (2023) i8716.
doi: 10.1126/sciadv.adi8716
A.R. Hammodat, S. Nassar, M.M. Mortula, et al., J. Environ. Manage. 345 (2023) 118779.
doi: 10.1016/j.jenvman.2023.118779
N. Qian, X. Gao, X. Lang, et al., P. Natl. Acad. Sci. U. S. A. 121 (2024) e1994385175.
A.A. Koelmans, N.H. Mohamed Nor, E. Hermsen, et al., Water Res. 155 (2019) 410–422.
doi: 10.1016/j.watres.2019.02.054
D. Pedrero, C. Edo, F. Fernández-Piñas, et al., Sep. Purif. Technol. 333 (2024) 125816.
doi: 10.1016/j.seppur.2023.125816
G. Zhou, X. Huang, H. Xu, et al., Sci. Total Environ. 820 (2022) 153190.
doi: 10.1016/j.scitotenv.2022.153190
H. Jiang, Y. Zhang, K. Bian, et al., Chem. Eng. J. 448 (2022) 137692.
doi: 10.1016/j.cej.2022.137692
J.D. Ladouceur, R.M. Narbaitz, C.Q. Lan, J. Water Process Eng. 56 (2023) 104391.
doi: 10.1016/j.jwpe.2023.104391
J. Hongru, Z. Yingshuang, W. Hui, Environ. Sci. Technol. 54 (2020) 9742–9756.
doi: 10.1021/acs.est.9b07861
O. Kökkılıç, S. Mohammadi-Jam, P. Chu, et al., Adv. Colloid Interfac. 308 (2022) 102769.
doi: 10.1016/j.cis.2022.102769
H. Jiang, J. Bu, K. Bian, et al., Water Res. 233 (2023) 119794.
doi: 10.1016/j.watres.2023.119794
F. Yuan, X. Li, W. Yu, et al., J. Water Process Eng. 49 (2022) 103084.
doi: 10.1016/j.jwpe.2022.103084
B. Swart, A. Pihlajamäki, Y.M. John Chew, et al., Chem. Eng. J. 449 (2022) 137866.
doi: 10.1016/j.cej.2022.137866
Y. Zhang, H. Jiang, K. Bian, et al., Sci. Total Environ. 792 (2021) 148345.
doi: 10.1016/j.scitotenv.2021.148345
C. Oliveira, J. Rubio, Int. J. Miner. Process. 98 (2011) 118–123.
doi: 10.1016/j.minpro.2010.10.006
S. Ye, M. Cheng, G. Zeng, et al., Water Res. 179 (2020) 115876.
doi: 10.1016/j.watres.2020.115876
J. Li, G. Wang, X. Gou, et al., Anal. Chem. 94 (2022) 12657–12663.
doi: 10.1021/acs.analchem.2c01703
M. Zhang, J. Yang, Z. Kang, et al., J. Hazard. Mater. 404 (2021) 124095.
doi: 10.1016/j.jhazmat.2020.124095
B.K. Pramanik, S.K. Pramanik, S. Monira, Chemosphere 282 (2021) 131053.
doi: 10.1016/j.chemosphere.2021.131053
P. Pal, A.G. Corpuz, S.W. Hasan, et al., Chemosphere 273 (2021) 128568.
doi: 10.1016/j.chemosphere.2020.128568
T. Kim, H. Park, M. Han, Civ. Eng. 21 (2017) 2567–2572.
doi: 10.1007/s12205-017-0025-z
Y. Wang, Y. Li, L. Tian, et al., Water Environ. Res. 93 (2021) 693–702.
doi: 10.1002/wer.1352
C. Li, H. Zhang, J. Ind. Eng. Chem. 106 (2022) 37–51.
doi: 10.1016/j.jiec.2021.11.009
M.R. Cordova, A.I.S. Purwiyanto, Y. Suteja, Mar. Pollut. Bull. 142 (2019) 183–188.
doi: 10.1016/j.marpolbul.2019.03.040
S. Liu, J. Wang, Chem. Eng. J. 469 (2023) 143910.
doi: 10.1016/j.cej.2023.143910
Y.S. Ho, G. McKay, Chem. Eng. J. 70 (1998) 115–124.
doi: 10.1016/S0923-0467(98)00076-1
S. Ma, Y. Han, Y. Zhang, et al., J. Mol. Liq. 362 (2022) 119700.
doi: 10.1016/j.molliq.2022.119700
B.P. Bastakoti, S. Guragain, A. Yoneda, Polym. Chem. 1 (2010) 347–353.
doi: 10.1039/B9PY00231F
X. Xing, Y. Zhang, G. Zhou, et al., Sci. Total Environ. 876 (2023) 162763.
doi: 10.1016/j.scitotenv.2023.162763
K. Loganathan, J. Saththasivam, S. Sarp, Desalination 433 (2018) 25–32.
doi: 10.1016/j.desal.2018.01.012
R.K. Henderson, S.A. Parsons, B. Jefferson, Environ. Technol. 31 (2010) 781–790.
doi: 10.1080/09593331003663302
S. Zhao, H. Zhong, G. Liu, J. Cent. South Univ. Technol. 14 (2007) 500–503.
doi: 10.1007/s11771-007-0097-x
Y. Shi, J. Yang, J. Ma, et al., Front. Env. Sci. Eng. 11 (2017) 10.
M. Zhang, P. Guiraud, Water Res. 126 (2017) 399–410.
doi: 10.1016/j.watres.2017.09.051
S. Kam, J. Gregory, Colloid Surf. A 159 (1999) 165–179.
doi: 10.1016/S0927-7757(99)00172-7
Y. Jiang, S. Zhou, J. Fei, et al., Water Res. 215 (2022) 118262.
doi: 10.1016/j.watres.2022.118262
V. Filipe, A. Hawe, W. Jiskoot, Pharm. Res. Dordr. 27 (2010) 796–810.
doi: 10.1007/s11095-010-0073-2
R. Li, Y. Zhou, B. Albijanic, et al., Energ. Fuel 37 (2023) 13673–13685.
doi: 10.1021/acs.energyfuels.3c01703
H. Jiang, Y. Gao, Q. Yang, et al., Powder Technol. 331 (2018) 218–225.
doi: 10.3901/jme.2018.17.218
H. Jiang, Y. Zhang, K. Bian, et al., J. Environ. Chem. Eng. 10 (2022) 107834.
doi: 10.1016/j.jece.2022.107834
H. Wang, C. Wang, J. Fu, Waste Manage. 33 (2013) 2623–2631.
doi: 10.1016/j.wasman.2013.09.003
C. Wang, H. Wang, G. Gu, et al., Waste Manage. 46 (2015) 56–61.
doi: 10.11728/cjss2015.01.056
H. Wang, C. Wang, J. Fu, et al., Waste Manage. 34 (2014) 309–315.
doi: 10.1016/j.wasman.2013.11.007
Y. Zhang, X. Su, N.F.Y. Tam, et al., Chin. Chem. Lett. 33 (2022) 5213–5217.
doi: 10.3390/polym14235213
R.K. Henderson, S.A. Parsons, B. Jefferson, Sep. Sci. Technol. 44 (2009) 1923–1940.
doi: 10.1080/01496390902955628
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274