Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer
-
* Corresponding author.
E-mail address: lingling.chu1@dhu.edu.cn (L. Chu).
Citation:
Fan Chen, Xiaoyu Zhao, Weihang Miao, Yingying Li, Ye Yuan, Lingling Chu. Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer[J]. Chinese Chemical Letters,
;2025, 36(5): 110239.
doi:
10.1016/j.cclet.2024.110239
K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
doi: 10.1126/science.1131943
D. O’Hagan, Chem. Soc. Rev. 37 (2008) 308–319.
doi: 10.1039/B711844A
S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
doi: 10.1039/B610213C
M. Inoue, Y. Sumii, N. Shibata, ACS Omega 5 (2020) 10633–10640.
doi: 10.1021/acsomega.0c00830
H. Mei, A.M. Remete, Y. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.
doi: 10.1016/j.cclet.2020.03.050
Q. Wang, H. Song, Q. Wang, Chin. Chem. Lett. 33 (2022) 626–642.
doi: 10.1016/j.cclet.2021.07.064
J. He, Z. Li, G. Dhawan, et al., Chin. Chem. Lett. 34 (2023) 107578.
doi: 10.1016/j.cclet.2022.06.001
Q. Wang, Y. Bian, G. Dhawan, et al., Chin. Chem. Lett. 35 (2024) 109780.
doi: 10.1016/j.cclet.2024.109780
V.A. Brunet, D. O’Hagan, Angew. Chem. Int. Ed. 47 (2008) 1179–1182.
doi: 10.1002/anie.200704700
J.R. Wolstenhulme, V. Gouverneur, Acc. Chem. Res. 47 (2014) 3560–3570.
doi: 10.1021/ar500282z
X. Yang, T. Wu, R.J. Phipps, F.D. Toste, Chem. Rev. 115 (2015) 826–870.
doi: 10.1021/cr500277b
P.A. Champagne, J. Desroches, J.D. Hamel, M. Vandamme, J.F. Paquin, Chem. Rev. 115 (2015) 9073–9174.
doi: 10.1021/cr500706a
Y. Zhu, J. Han, J. Wang, et al., Chem. Rev. 118 (2018) 3887–3964.
doi: 10.1021/acs.chemrev.7b00778
I.N.M. Leibler, S.S. Gandhi, M.A. Tekle Smith, A.G. Doyle, J. Am. Chem. Soc. 145 (2023) 9928–9950.
doi: 10.1021/jacs.3c01824
C. Chen, L. Fu, P. Chen, G. Liu, Chin. J. Chem. 35 (2017) 1781–1788.
doi: 10.1002/cjoc.201700489
V. Rauniyar, A.D. Lackner, G.L. Hamilton, F.D. Toste, Science 334 (2011) 1681–1684.
doi: 10.1126/science.1213918
N.A. Cochrane, H. Nguyen, M.R. Gagne, J. Am. Chem. Soc. 135 (2013) 628–631.
doi: 10.1021/ja3116795
C. Sandford, R. Rasappan, V.K. Aggarwal, J. Am. Chem. Soc. 137 (2015) 10100–10103.
doi: 10.1021/jacs.5b05848
X. Bertrand, L. Chabaud, J.F. Paquin, Chem. Asian J. 16 (2021) 563–574.
doi: 10.1002/asia.202001403
Y. Huang, A.M. Walji, C.H. Larsen, D.W.C. MacMillan, J. Am. Chem. Soc. 127 (2005) 15051–15053.
doi: 10.1021/ja055545d
E. Emer, L. Pfeifer, J.M. Brown, V. Gouverneur, Angew. Chem. Int. Ed. 53 (2014) 4181–4185.
doi: 10.1002/anie.201310056
L. Wang, X. Jiang, J. Chen, Y. Huang, Angew. Chem. Int. Ed. 58 (2019) 7410–7414.
doi: 10.1002/anie.201902989
X. Yin, B. Chen, F. Qiu, et al., ACS Catal. 10 (2020) 1954–1960.
doi: 10.1021/acscatal.9b05264
H. Egami, Y. Hamashima, Chem. Rec. 23 (2023) e202200285.
doi: 10.1002/tcr.202200285
E.A. McKnight, D. Cadwallader, C.M. Le, Eur. J. Org. Chem. 27 (2023) e202300017.
A.J. Jordan, G. Lalic, J.P. Sadighi, Chem. Rev. 116 (2016) 8318–8372.
doi: 10.1021/acs.chemrev.6b00366
S.W.M. Crossley, C. Obradors, R.M. Martinez, R.A. Shenvi, Chem. Rev. 116 (2016) 8912–9000.
doi: 10.1021/acs.chemrev.6b00334
N.A. Eberhardt, H. Guan, Chem. Rev. 116 (2016) 8373–8426.
doi: 10.1021/acs.chemrev.6b00259
R.W. Hoffmann, Chem. Soc. Rev. 45 (2016) 577–583.
doi: 10.1039/C5CS00423C
S.A. Green, S.W.M. Crossley, J.L.M. Matos, et al., Acc. Chem. Res. 51 (2018) 2628–2640.
doi: 10.1021/acs.accounts.8b00337
S.L. Shevick, C.V. Wilson, S. Kotesova, et al., Chem. Sci. 11 (2020) 12401–12422.
doi: 10.1039/d0sc04112b
T.J. Barker, D.L. Boger, J. Am. Chem. Soc. 134 (2012) 13588–13591.
doi: 10.1021/ja3063716
H. Shigehisa, E. Nishi, M. Fujisawa, K. Hiroya, Org. Lett. 15 (2013) 5158–5161.
doi: 10.1021/ol402696h
P. Song, S. Zhu, ACS Catal. 10 (2020) 13165–13170.
doi: 10.1021/acscatal.0c03884
Y. Xie, P.W. Sun, Y. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 7097–7101.
doi: 10.1002/anie.201902607
J. Liu, J. Rong, D.P. Wood, et al., J. Am. Chem. Soc. 146 (2024) 4380–4392.
doi: 10.1021/jacs.3c10989
F. Chen, Q. Zhang, Y. Li, Z.X. Yu, L. Chu, J. Am. Chem. Soc. 146 (2024) 11418–11431.
H.Y. Tu, F. Wang, L. Huo, et al., J. Am. Chem. Soc. 142 (2020) 9604–9611.
doi: 10.1021/jacs.0c03708
S. Zhu, X. Zhao, H. Li, L. Chu, Chem. Soc. Rev. 50 (2021) 10836–10856.
doi: 10.1039/d1cs00399b
F. Wang, S. Pan, S. Zhu, L. Chu, ACS Catal. 12 (2022) 9779–9789.
doi: 10.1021/acscatal.2c02163
Y. Dai, F. Wang, S. Zhu, L. Chu, Chin. Chem. Lett. 33 (2022) 4074–4078.
doi: 10.1016/j.cclet.2021.12.050
L. Huo, X. Li, Y. Zhao, L. Li, L. Chu, J. Am. Chem. Soc. 145 (2023) 9876–9885.
doi: 10.1021/jacs.3c02748
X. Li, M. Yuan, F. Chen, et al., Chem 9 (2023) 154–169.
doi: 10.1016/j.chempr.2022.09.020
S. Pan, F. Chen, Y. Zhang, L. Shao, L. Chu, Angew. Chem. Int. Ed. 62 (2023) e202305426.
doi: 10.1002/anie.202305426
Y. Fan, Z. Huang, Y. Lu, S. Zhu, L. Chu, Angew. Chem. Int. Ed. 63 (2024) e202315974.
doi: 10.1002/anie.202315974
C. Yao, S. Wang, J. Norton, M. Hammond, J. Am. Chem. Soc. 142 (2020) 4793–4799.
doi: 10.1021/jacs.9b13757
W. Liu, X. Huang, M.J. Cheng, et al., Science 337 (2012) 1322–1325.
doi: 10.1126/science.1222327
W. Liu, J.T. Groves, Angew. Chem. Int. Ed. 52 (2013) 6024–6027.
doi: 10.1002/anie.201301097
F. Yin, Z. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 134 (2012) 10401–10404.
doi: 10.1021/ja3048255
Z. Liu, H. Chen, Y. Lv, et al., J. Am. Chem. Soc. 140 (2018) 6169–6175.
doi: 10.1021/jacs.8b03077
L. Zhu, C. Li, Transition metal-mediated radical fluorination for preparing alkyl fluorides, in: J. Hu, T. Umemoto (Eds.), Fluorination, Springer Singapore, Singapore, 2018, pp. 1–17.
H. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 137 (2015) 3490–3493.
doi: 10.1021/jacs.5b00939
J.K. Bower, A.D. Cypcar, B. Henriquez, S.C.E. Stieber, S. Zhang, J. Am. Chem. Soc. 142 (2020) 8514–8521.
doi: 10.1021/jacs.0c02583
H. Hintz, J. Bower, J. Tang, et al., Chem Catal. 3 (2023) 100491.
doi: 10.1016/j.checat.2022.100491
C. Panda, O. Anny-Nzekwue, L.M. Doyle, R. Gericke, A.R. McDonald, JACS Au 3 (2023) 919–928.
doi: 10.1021/jacsau.3c00021
H. Zhang, X. Sun, C. Ma, et al., ACS Catal. 14 (2024) 3115–3127.
doi: 10.1021/acscatal.3c05154
Q. Zhao, Z. Chen, J. Soler, et al., Nat. Synth. 3 (2024) 958–966.
doi: 10.1038/s44160-024-00507-7
R.I. McDonald, G. Liu, S.S. Stahl, Chem. Rev. 111 (2011) 2981–3019.
doi: 10.1021/cr100371y
H. Wen, G. Liu, Z. Huang, Coord. Chem. Rev. 386 (2019) 138–153.
doi: 10.1016/j.ccr.2019.01.024
J. Guo, Z. Cheng, J. Chen, X. Chen, Z. Lu, Acc. Chem. Res. 54 (2021) 2701–2716.
doi: 10.1021/acs.accounts.1c00212
W. Zhao, H.X. Lu, W.W. Zhang, B.J. Li, Acc. Chem. Res. 56 (2023) 308–321.
doi: 10.1021/acs.accounts.2c00713
Y. Li, X. Lu, Y. Fu, CCS Chem. 6 (2024) 1130–1156.
doi: 10.31635/ccschem.024.202303678
J. Derosa, R. Kleinmans, V.T. Tran, et al., J. Am. Chem. Soc. 140 (2018) 17878–17883.
doi: 10.1021/jacs.8b11942
W. Zhao, K.Z. Chen, A.Z. Li, B.J. Li, J. Am. Chem. Soc. 144 (2022) 13071–13078.
doi: 10.1021/jacs.2c05993
H.J. Kang, C. Lee, S. Hong, Angew. Chem. Int. Ed. 62 (2023) e202305042.
doi: 10.1002/anie.202305042
C. Lee, M. Kim, S. Han, D. Kim, S. Hong, J. Am. Chem. Soc. 146 (2024) 9375–9384.
doi: 10.1021/jacs.4c01548
Z. Wang, H. Yin, G.C. Fu, Nature 563 (2018) 379–383.
doi: 10.1038/s41586-018-0669-y
S.W.M. Crossley, F. Barabé, R.A. Shenvi, J. Am. Chem. Soc. 136 (2014) 16788–16791.
doi: 10.1021/ja5105602
J. Rodrigalvarez, H. Wang, R. Martin, J. Am. Chem. Soc. 145 (2023) 3869–3874.
doi: 10.1021/jacs.2c12915
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Yuan Liu , Zhu Yin , Xintuo Yang , Jiajia Cheng . Advances in photocatalytic deracemization of sp3-hybridized chiral centers via hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110521-. doi: 10.1016/j.cclet.2024.110521
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176