-
[1]
F. Chen, B. Gülbakan, S. Weidmann, et al., Mass Spectrom. Rev. 35 (2016) 48–70.
doi: 10.1002/mas.21462
-
[2]
J.A. Loo, Mass Spectrom. Rev. 16 (1997) 1–23.
doi: 10.1002/(SICI)1098-2787(1997)16:1<1::AID-MAS1>3.0.CO;2-L
-
[3]
J.L. Bennett, G.T. Nguyen, W.A. Donald, Chem. Rev. 122 (2022) 7327–7385.
doi: 10.1021/acs.chemrev.1c00293
-
[4]
C.F. Lourenço, B. Gago, R.M. Barbosa, et al., J. Agric. Food Chem. 56 (2008) 3798–3804.
doi: 10.1021/jf0733259
-
[5]
J.J. Peterson, J.T. Dwyer, P.F. Jacques, et al., Nutr. Rev. 70 (2012) 491–508.
doi: 10.1111/j.1753-4887.2012.00508.x
-
[6]
P. Xin, S. Han, J. Huang, et al., Chin. Chem. Lett. 34 (2023) 108125.
doi: 10.1016/j.cclet.2022.108125
-
[7]
D. Treutter, Environ. Chem. Lett. 4 (2006) 147–157.
doi: 10.1007/s10311-006-0068-8
-
[8]
J. Laoué, C. Fernandez, E. Ormeño, Plants 11 (2022) 172.
doi: 10.3390/plants11020172
-
[9]
X. Zhang, J. Li, K.Z. Lu, et al., Chin. Chem. Lett. 35 (2024) 109456.
doi: 10.1016/j.cclet.2023.109456
-
[10]
C.D. Kanakis, I. Hasni, P. Bourassa, et al., Food Chem. 127 (2011) 1046–1055.
doi: 10.1016/j.foodchem.2011.01.079
-
[11]
Y. Yan, J. Hu, P. Yao, Langmuir 25 (2009) 397–402.
doi: 10.1021/la8030123
-
[12]
V. de Freitas, N. Mateus, Curr. Org. Chem. 16 (2012) 724–746.
doi: 10.2174/138527212799958002
-
[13]
A. Papadopoulou, R.A. Frazier, Trends Food Sci. Technol. 15 (2004) 186–190.
doi: 10.1016/j.tifs.2003.09.017
-
[14]
J. Xiao, G. Kai, Crit. Rev. Food Sci. 52 (2012) 85–101.
doi: 10.1080/10408398.2010.499017
-
[15]
J. Xi, R. Guo, Int. J. Biol. Macromol. 40 (2007) 305–311.
doi: 10.1016/j.ijbiomac.2006.08.011
-
[16]
J.D. Eschweiler, R. Kerr, J. Rabuck-Gibbons, et al., Annu. Rev. Anal. Chem. 10 (2017) 25–44.
doi: 10.1146/annurev-anchem-061516-045414
-
[17]
A.J. Heck, Nat. Methods 5 (2008) 927–933.
doi: 10.1038/nmeth.1265
-
[18]
N.P. Barrera, S.C. Isaacson, M. Zhou, et al., Nat. Methods 6 (2009) 585–587.
doi: 10.1038/nmeth.1347
-
[19]
J. Marcoux, C.V. Robinson, Structure 21 (2013) 1541–1550.
doi: 10.1016/j.str.2013.08.002
-
[20]
N.P. Barrera, C.V. Robinson, Annu. Rev. Biochem. 80 (2011) 247–271.
doi: 10.1146/annurev-biochem-062309-093307
-
[21]
L. Ma, S. Liu, N.S. Xu, et al., Chin. Chem. Lett. 25 (2014) 1179–1184.
doi: 10.1016/j.cclet.2014.03.049
-
[22]
Z. Guo, Y. Liu, N. He, et al., Chin. Chem. Lett. 32 (2021) 40–47.
doi: 10.1016/j.cclet.2020.11.061
-
[23]
E.B. Erba, R. Zenobi, Annu. Rep. Prog. Chem. Sect. C 107 (2011) 199–228.
doi: 10.1039/c1pc90006d
-
[24]
D. Rathore, A. Faustino, J. Schiel, et al., Expert Rev. Proteomics 15 (2018) 431–449.
doi: 10.1080/14789450.2018.1469982
-
[25]
C. Guo, X. Zhang, X. Hong, et al., Chin. Chem. Lett. 35 (2024) 108867.
doi: 10.1016/j.cclet.2023.108867
-
[26]
X. Chang, N. Wang, D. Jiang, et al., Chin. Chem. Lett. 34 (2023) 107522.
doi: 10.1016/j.cclet.2022.05.036
-
[27]
H. Hernández, C.V. Robinson, Nat. Protoc. 2 (2007) 715–726.
doi: 10.1038/nprot.2007.73
-
[28]
D.D. Vallejo, C. Rojas Ramiŕez, K.F. Parson, et al., Chem. Rev. 122 (2022) 7690–7719.
doi: 10.1021/acs.chemrev.1c00857
-
[29]
R. Wu, J.B. Metternich, A.S. Kamenik, et al., Nat. Commun. 14 (2023) 2913.
doi: 10.1038/s41467-023-38463-z
-
[30]
J.F. Van Dyck, J.R. Burns, K.I.P. Le Huray, et al., Nat. Commun. 13 (2022) 3610.
doi: 10.1038/s41467-022-31029-5
-
[31]
K.G. Hicks, A.A. Cluntun, H.L. Schubert, et al., Science 379 (2023) 996–1003.
doi: 10.1126/science.abm3452
-
[32]
Y. Zhong, L. Han, B.T. Ruotolo, Angew. Chem. Int. Ed. 126 (2014) 9363–9366.
doi: 10.1002/ange.201403784
-
[33]
A. Al-jabiry, M. Palmer, J. Langridge, et al., Chemistry 27 (2021) 13783–13792.
doi: 10.1002/chem.202101857
-
[34]
L. McAlary, J.A. Harrison, J.A. Aquilina, et al., Anal. Chem. 92 (2020) 1702–1711.
doi: 10.1021/acs.analchem.9b01699
-
[35]
S.K. Chowdhury, V. Katta, B.T. Chait, J. Am. Chem. Soc. 112 (1990) 9012–9013.
doi: 10.1021/ja00180a074
-
[36]
B. Ibarra-Molero, A.N. Naganathan, J.M. Sanchez-Ruiz, et al., Modern analysis of protein folding by differential scanning calorimetry, in: A. Feig (Ed.), Methods in Enzymology, Academic Press, New York, 2016, pp. 281–318.
-
[37]
F.E. Torres, M.I. Recht, J.E. Coyle, et al., Curr. Opin. Struct. Biol. 20 (2010) 598–605.
doi: 10.1016/j.sbi.2010.09.001
-
[38]
R. Mahran, N. Vello, A. Komulainen, et al., Sci. Rep. 13 (2023) 20066.
doi: 10.1038/s41598-023-46720-w
-
[39]
G. Wang, R.R. Abzalimov, I.A. Kaltashov, Anal. Chem. 83 (2011) 2870–2876.
doi: 10.1021/ac200441a
-
[40]
A. Pruska, A. Marchand, R. Zenobi, Angew. Chem. Int. Ed. 60 (2021) 15518–15526.
-
[41]
G. Li, S. Zheng, Y. Chen, et al., Anal. Chem. 90 (2018) 7997–8001.
doi: 10.1021/acs.analchem.8b00859
-
[42]
T.J. El-Baba, D.W. Woodall, S.A. Raab, et al., J. Am. Chem. Soc. 139 (2017) 6306–6309.
doi: 10.1021/jacs.7b02774
-
[43]
S.A. Raab, T.J. El-Baba, D.W. Woodall, et al., J. Am. Chem. Soc. 142 (2020) 17372–17383.
doi: 10.1021/jacs.0c05365
-
[44]
A. Laganowsky, D.E. Clemmer, D.H. Russell, Annu. Rev. Biophys. 51 (2022) 63–77.
doi: 10.1146/annurev-biophys-102221-101121
-
[45]
J.L.P. Benesch, F. Sobott, C.V. Robinson, Anal. Chem. 75 (2003) 2208–2214.
doi: 10.1021/ac034132x
-
[46]
J.S. Jordan, E.R. Williams, Anal. Chem. 94 (2022) 16894–16900.
doi: 10.1021/acs.analchem.2c04204
-
[47]
A. Marchand, M.F. Czar, E.N. Eggel, et al., Nat. Commun. 11 (2020) 566.
doi: 10.1038/s41467-019-14179-x
-
[48]
A. Pruška, J.A. Harrison, A. Granzhan, et al., Anal. Chem. 95 (2023) 14384–14391.
doi: 10.1021/acs.analchem.3c02742
-
[49]
A. Marchand, F. Rosu, R. Zenobi, et al., J. Am. Chem. Soc. 140 (2018) 12553–12565.
doi: 10.1021/jacs.8b07302
-
[50]
T.E. Walker, M. Shirzadeh, H.M. Sun, et al., J. Am. Chem. Soc. 144 (2022) 2667–2678.
doi: 10.1021/jacs.1c11341
-
[51]
X. Cong, Y. Liu, W. Liu, et al., J. Am. Chem. Soc. 138 (2016) 4346–4349.
doi: 10.1021/jacs.6b01771
-
[52]
K.J. Light-Wahl, B.L. Schwartz, R.D. Smith, J. Am. Chem. Soc. 116 (1994) 5271–5278.
doi: 10.1021/ja00091a035
-
[53]
K.J. Light-Wahl, B.E. Winger, R.D. Smith, J. Am. Chem. Soc. 115 (1993) 5869–5870.
doi: 10.1021/ja00066a083
-
[54]
L. Dai, N. Guo, Y. Liu, et al., Chin. Chem. Lett. 30 (2019) 103–106.
doi: 10.1016/j.cclet.2017.12.023
-
[55]
L. Deng, E.N. Kitova, J.S. Klassen, J. Am. Soc. Mass Spectrom. 24 (2013) 988–996.
doi: 10.1007/s13361-013-0651-8
-
[56]
M.C. Jecklin, D. Touboul, R. Jain, et al., Anal. Chem. 81 (2009) 408–419.
doi: 10.1021/ac801782c
-
[57]
S. Yin, Y. Xie, J.A. Loo, J. Am. Soc. Mass Spectrom. 19 (2011) 1199–1208.
-
[58]
J.A. Harrison, A. Pruška, I. Oganesyan, et al., Chem. Eur. J. 27 (2021) 18015–18028.
doi: 10.1002/chem.202102474
-
[59]
T. Wyttenbach, M.T. Bowers, J. Phys. Chem. B 115 (2011) 12266–12275.
doi: 10.1021/jp206867a
-
[60]
T.J. El-Baba, D.R. Fuller, D.W. Woodall, et al., Chem. Commun. 54 (2018) 3270–3273.
doi: 10.1039/C7CC09829D
-
[61]
K.R. Babu, A. Moradian, D. Douglas, J. Am. Soc. Mass Spectrom. 12 (2001) 317–328.
doi: 10.1016/S1044-0305(00)00226-9
-
[62]
M. Jourdan, M.S. Searle, Biochemistry 39 (2000) 12355–12364.
doi: 10.1021/bi000718r
-
[63]
C. Wan, M. Cui, F. Song, et al., Int. J. Mass Spectrom. 283 (2009) 48–55.
doi: 10.1016/j.ijms.2009.01.007
-
[64]
C.L. Mazzitelli, Y. Chu, J.J. Reczek, et al., J. Am. Soc. Mass Spectrom. 18 (2007) 311–321.
doi: 10.1016/j.jasms.2006.09.021
-
[65]
Z. Jiang, T. Li, L. Ma, et al., Food Res. Int. 131 (2020) 109006.
doi: 10.1016/j.foodres.2020.109006
-
[66]
Y. Jia, X. Yan, Y. Huang, et al., Food Chem. 396 (2022) 133685.
doi: 10.1016/j.foodchem.2022.133685
-
[67]
C. Ren, W. Xiong, J. Li, et al., Food Hydrocolloid 92 (2019) 155–162.
doi: 10.1016/j.foodhyd.2019.01.053
-
[68]
J. Ye, L. Deng, Y. Wang, et al., Food Chem. 362 (2021) 130238.
doi: 10.1016/j.foodchem.2021.130238
-
[69]
J. Li, R. Tian, G. Liang, et al., Food Chem. 355 (2021) 129617.
doi: 10.1016/j.foodchem.2021.129617
-
[70]
I.J. Joye, G. Davidov-Pardo, R.D. Ludescher, et al., Food Chem. 185 (2015) 261–267.
doi: 10.1016/j.foodchem.2015.03.128
-
[71]
K.X. Wan, M.L. Gross, T. Shibue, J. Am. Soc. Mass Spectrom. 11 (2000) 450–457.
doi: 10.1016/S1044-0305(00)00095-7
-
[72]
A. Jarzab, N. Kurzawa, T. Hopf, et al., Nat. Methods 17 (2020) 495–503.
doi: 10.1038/s41592-020-0801-4