MOFs helping heritage against environmental threats
-
* Corresponding author.
E-mail address: wangchongchen@bucea.edu.cn (C.-C. Wang).
Citation:
Kunpeng Zhou, Zhihao Shi, Xiao-Hong Yi, Peng Wang, Aiqun Li, Chong-Chen Wang. MOFs helping heritage against environmental threats[J]. Chinese Chemical Letters,
;2025, 36(5): 110226.
doi:
10.1016/j.cclet.2024.110226
J. Rouhi, Asian J. Sci. Technol. 8 (2017) 7109–7114.
A. Artesani, F. Di Turo, M. Zucchelli, A. Traviglia, Coatings 10 (2020) 217.
doi: 10.3390/coatings10030217
T.Y. Zuo, L. Zhang, H.Y. Wang, W.X. Ding, Chin. J. Inorg. Chem. 39 (2023) 1817–1831.
K. Dedecker, R.S. Pillai, F. Nouar, et al., ACS Appl. Mater. Interfaces 10 (2018) 13886–13894.
doi: 10.1021/acsami.8b02930
M. Baglioni, G. Poggi, D. Chelazzi, P. Baglioni, Molecules 26 (2021) 3967.
doi: 10.3390/molecules26133967
O.M. Yaghi, G. Li, H. Li, Nature 378 (1995) 703–706.
doi: 10.1038/378703a0
S. Kitagawa, Chem. Soc. Rev. 43 (2014) 5415–5418.
doi: 10.1039/C4CS90059F
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341 (2013) 1230444.
doi: 10.1126/science.1230444
C.C. Wang, Y.Q. Zhang, J. Li, P. Wang, J. Mol. Struct. 1083 (2015) 127–136.
doi: 10.1016/j.molstruc.2014.11.036
H.P. Jing, C.C. Wang, Y.W. Zhang, P. Wang, R. Li, RSC Adv. 4 (2014) 54454–54462.
doi: 10.1039/C4RA08820D
S.S.Y. Chui, S.M.F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148–1150.
doi: 10.1126/science.283.5405.1148
C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7 (2014) 2831–2867.
doi: 10.1039/C4EE01299B
M.S. Khan, Y. Li, D.S. Li, et al., Nanoscale Adv. 5 (2023) 6318–6348.
doi: 10.1039/d3na00627a
N. Gargiulo, A. Peluso, D. Caputo, Processes 8 (2020) 613.
doi: 10.3390/pr8050613
J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38 (2009) 1477–1504.
doi: 10.1039/b802426j
H. Wang, W.P. Lustig, J. Li, Chem. Soc. Rev. 47 (2018) 4729–4756.
doi: 10.1039/c7cs00885f
K. Zu, M. Qin, S. Cui, Renew. Sustain. Energy Rev. 133 (2020) 110246.
doi: 10.1016/j.rser.2020.110246
M. Qin, P. Hou, Z. Wu, J. Wang, Build. Environ. 169 (2020) 106581.
doi: 10.1016/j.buildenv.2019.106581
S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, Adv. Funct. Mater. 31 (2021) 2006291.
doi: 10.1002/adfm.202006291
P. Behera, S. Subudhi, S.P. Tripathy, K. Parida, Coordin. Chem. Rev. 456 (2022) 214392.
doi: 10.1016/j.ccr.2021.214392
Y. Xie, S. Lyu, Y. Zhang, C. Cai, Materials 15 (2022) 7727.
doi: 10.3390/ma15217727
A. Alvarez-Martin, M. Wilcop, R. Anderson, et al., Air Quality, Atmosphere Health 14 (2021) 1797–1809.
doi: 10.1007/s11869-021-01054-2
A. Cincinelli, T. Martellini, A. Amore, et al., Sci. Total Environ. 572 (2016) 333–339.
doi: 10.1016/j.scitotenv.2016.07.201
H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112 (2012) 673–674.
doi: 10.1021/cr300014x
K. Vellingiri, J.E. Szulejko, P. Kumar, et al., Sci. Rep. 6 (2016) 27813.
doi: 10.1038/srep27813
B. Siu, A.R. Chowdhury, Z. Yan, S.M. Humphrey, T. Hutter, Coordin. Chem. Rev. 485 (2023) 215119.
doi: 10.1016/j.ccr.2023.215119
L.T. Gibson, C.M. Watt, Corros. Sci. 52 (2010) 172–178.
doi: 10.1016/j.corsci.2009.08.054
A. Al Mohtar, M.I. Severino, P. Tignol, et al., J. Cult. Herit. 66 (2024) 236–243.
doi: 10.1016/j.culher.2023.11.013
R.G. AbdulHalim, P.M. Bhatt, Y. Belmabkhout, et al., J. Am. Chem. Soc. 139 (2017) 10715–10722.
doi: 10.1021/jacs.7b04132
P.P. Conti, K. Batra, P. Iacomi, et al., Chem. Commun. 59 (2023) 7064–7067.
doi: 10.1039/d3cc01724a
M. Savage, Y. Cheng, T.L. Easun, et al., Adv. Mater. 28 (2016) 8705–8711.
doi: 10.1002/adma.201602338
S. Yang, A.J. Ramirez-Cuesta, R. Newby, et al., Nat. Chem. 7 (2015) 121–129.
doi: 10.1038/nchem.2114
X.H. Xiong, Z.W. Wei, W. Wang, L.L. Meng, C.Y. Su, J. Am. Chem. Soc. 145 (2023) 14354–14364.
doi: 10.1021/jacs.3c03309
G. Liu, A. Cadiau, Y. Liu, et al., Angew. Chem. 130 (2018) 15027–15032.
doi: 10.1002/ange.201808991
E. Martínez-Ahumada, A. López-Olvera, V. Jancik, et al., Organometallics 39 (2020) 883–915.
doi: 10.1021/acs.organomet.9b00735
K.C. Kim, J. Organomet. Chem. 854 (2018) 94–105.
doi: 10.3343/lmo.2018.8.3.94
Y. Tulchinsky, C.H. Hendon, K.A. Lomachenko, et al., J. Am. Chem. Soc. 139 (2017) 5992–5997.
doi: 10.1021/jacs.7b02161
C. Petit, Curr. Opin. Chem. Eng. 20 (2018) 132–142.
doi: 10.1016/j.coche.2018.04.004
P. Nugent, Y. Belmabkhout, S.D. Burd, et al., Nature 495 (2013) 80–84.
doi: 10.1038/nature11893
S. Yang, X. Lin, W. Lewis, et al., Nat. Mater. 11 (2012) 710–716.
doi: 10.1038/nmat3343
X. Han, S. Yang, M. Schröder, Nat. Rev. Chem. 3 (2019) 108–118.
doi: 10.1038/s41570-019-0073-7
X. Han, Y. Hong, Y. Ma, et al., J. Am. Chem. Soc. 142 (2020) 15235–15239.
doi: 10.1021/jacs.0c06414
J. Li, X. Han, X. Zhang, et al., Nat. Chem. 11 (2019) 1085–1090.
doi: 10.1038/s41557-019-0356-0
X. Han, H.G.W. Godfrey, L. Briggs, et al., Nat. Mater. 17 (2018) 691–696.
doi: 10.1038/s41563-018-0104-7
C. Dong, J.J. Yang, L.H. Xie, et al., Nat. Commun. 13 (2022) 4991.
doi: 10.1038/s41467-022-32678-2
Z.B. Sun, Y.N. Si, S.N. Zhao, Q.Y. Wang, S.Q. Zang, J. Am. Chem. Soc. 143 (2021) 5150–5157.
doi: 10.1021/jacs.1c01027
D. Britt, D. Tranchemontagne, O.M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 11623–11627.
doi: 10.1073/pnas.0804900105
X. Han, W. Lu, Y. Chen, et al., J. Am. Chem. Soc. 143 (2021) 3153–3161.
doi: 10.1021/jacs.0c11930
B.E.R. Snyder, A.B. Turkiewicz, H. Furukawa, et al., Nature 613 (2023) 287–291.
doi: 10.1038/s41586-022-05409-2
G. Han, H. Huang, M. Guo, et al., Sep. Purif. Technol. 328 (2024) 125116.
doi: 10.1016/j.seppur.2023.125116
Y. Zhang, Y. Zhang, J. Huang, Herit. Sci. 10 (2022) 25.
doi: 10.1186/s40494-022-00656-y
D. Li, H. Zhou, F. Xu, et al., J. Cult. Herit. 62 (2023) 21–31.
doi: 10.1016/j.culher.2023.05.015
H. Shu, M. Yang, Q. Liu, M. Luo, Coatings 10 (2020) 179.
doi: 10.3390/coatings10020179
J. Tokarský, P. Martinec, K.M. Kutláková, et al., Constr. Build. Mater. 199 (2019) 549–559.
doi: 10.1016/j.conbuildmat.2018.12.045
D. Sun, P.R. Adiyala, S.J. Yim, D.P. Kim, Angew. Chem. 131 (2019) 7483–7487.
doi: 10.1002/ange.201902961
S. Roy, V.M. Suresh, T.K. Maji, Chem. Sci. 7 (2016) 2251–2256.
doi: 10.1039/C5SC03676C
G. Huang, Q. Yang, Q. Xu, S.H. Yu, H.L. Jiang, Angew. Chem. 128 (2016) 7505–7509.
doi: 10.1002/ange.201600497
S. Mukherjee, A.M. Kansara, D. Saha, et al., Chemistry 22 (2016) 10937–10943.
doi: 10.1002/ange.201600497
K. Jayaramulu, F. Geyer, A. Schneemann, et al., Adv. Mater. 31 (2019) 1900820.
doi: 10.1002/adma.201900820
G. Hoek, R.M. Krishnan, R. Beelen, et al., Environ. Health 12 (2013) 1–16.
doi: 10.1186/1476-069X-12-1
A. Seaton, D. Godden, W. MacNee, K. Donaldson, Lancet 345 (1995) 176–178.
doi: 10.1016/S0140-6736(95)90173-6
Y. Chen, S. Zhang, S. Cao, et al., Adv. Mater. 29 (2017) 1606221.
doi: 10.1002/adma.201606221
Y. Zhang, S. Yuan, X. Feng, et al., J. Am. Chem. Soc. 138 (2016) 5785–5788.
doi: 10.1021/jacs.6b02553
Y. Song, X. Tang, S. Xie, et al., J. Hazard. Mater. 146 (2007) 124–130.
doi: 10.1016/j.jhazmat.2006.11.058
E. Di Carlo, R. Chisesi, G. Barresi, et al., Environ. Ecol. Res. 4 (2016) 257–264.
doi: 10.13189/eer.2016.040504
D. Grabek-Lejko, A. Tekiela, I. Kasprzyk, Int. Biodeterior. Biodegrad. 123 (2017) 46–55.
doi: 10.1016/j.ibiod.2017.05.028
J. Liu, D. Wu, N. Zhu, Y. Wu, G. Li, Trends Food Sci. Technol. 109 (2021) 413–434.
doi: 10.1016/j.tifs.2021.01.012
M. Shen, F. Forghani, X. Kong, et al., Compr. Rev. Food Sci. Food Saf. 19 (2020) 1397–1419.
doi: 10.1111/1541-4337.12515
W. Zhuang, D. Yuan, J.R. Li, et al., Adv. Healthc. Mater. 1 (2012) 225–238.
doi: 10.1002/adhm.201100043
L. Macomber, C. Rensing, J.A. Imlay, J. Bacteriol. 189 (2007) 1616–1626.
doi: 10.1128/JB.01357-06
C. Pettinari, R. Pettinari, C. Di Nicola, et al., Coordin. Chem. Rev. 446 (2021) 214121.
doi: 10.1016/j.ccr.2021.214121
W. Nong, J. Wu, R.A. Ghiladi, Y. Guan, Coordin. Chem. Rev. 442 (2021) 214007.
doi: 10.1016/j.ccr.2021.214007
M.Y. Memar, R. Ghotaslou, M. Samiei, K. Adibkia, Infect. Drug Resist. 11 (2018) 567–576.
doi: 10.2147/IDR.S142397
P. Li, J. Li, X. Feng, et al., Nat. Commun. 10 (2019) 2177.
doi: 10.1038/s41467-019-10218-9
J. Kirby Atkinson, Stud. Conserv. 59 (2014) 205–212.
doi: 10.1179/2047058414Y.0000000141
M.F. Mecklenburg, C.S. Tumosa, ASHRAE J. 41 (1999) 69–74.
D. Ma, P. Li, X. Duan, et al., Angew. Chem. 132 (2020) 3933–3937.
doi: 10.1002/ange.201914762
L. Shi, K.O. Kirlikovali, Z. Chen, O.K. Farha, Chem 10 (2024) 484–503.
doi: 10.1016/j.chempr.2023.09.005
G. Tao, X. Chen, Y. Wang, et al., J. Clean. Prod. 419 (2023) 138296.
doi: 10.1016/j.jclepro.2023.138296
N.X. Zhu, Z.W. Wei, C.X. Chen, et al., Angew. Chem. 134 (2022) e202112097.
doi: 10.1002/ange.202112097
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251