

Carbon-based quantum dots/nanodots materials for potassium ion storage
English
Carbon-based quantum dots/nanodots materials for potassium ion storage
-
Key words:
- Quantum dots
- / Nanodots
- / Potassium ion battery
- / Anode
- / Composite material
-
人类活动造成大气中汞含量比自然水平高出约450%,随着大气中汞含量不断上升,人们对汞排放控制越来越重视[1]。中国人为汞排放源中,燃煤电厂占排放总量85%以上[2]。为控制燃煤汞排放,中国自2014年开始执行的《火力发电厂大气污染物排放标准》(GB 1323—2011),将汞的允许排放水平定为30 μg/m3。Wu等[3]建议在2025年将该排放限值修改为5 μg/m3,并希望在2030年进一步降低至1 μg/m3。因此,迫切需要开发经济高效的燃煤电厂汞排放控制技术。
燃煤电厂中汞排放主要以单质汞(Hg0)、氧化汞(Hg2+)以及颗粒态汞(Hgp)三种形式存在,燃煤电厂现有常规污染物控制设备对汞的协同脱除包括选择性催化还原脱硝(SCR)、静电除尘器(ESP)、烟气湿法脱硫(WFGD)和湿式电除尘(WESP)。SCR系统将烟气中的Hg0转化为Hg2+,为后续WFGD对Hg2+的脱除提供有利条件。ESP主要对烟气中的颗粒态汞(Hgp)进行高效脱除,WFGD对烟气中的Hg2+进行统一收集,还会将少量的Hg2+还原成Hg0,WESP进一步脱除烟气中的细微米颗粒(Hgp)[4-6],因此,如何脱除Hg0成为燃煤电厂汞排放控制的重点。中国高等院校及科研机构对燃煤电厂汞迁移转化规律及其排放进行了测试,但由于目前燃煤电厂所使用的污染物控制装置(APCDs)差异较大、煤种、锅炉运行状态、汞在各污染物控制装置中迁移转化规律尚不完全清晰等原因,超低排放燃煤机组中汞的迁移转化及排放数据仍然不足。
循环流化床(CFB)和煤粉炉(PC)是两种大规模火力发电技术。CFB具有燃料适应性广、负荷调整范围广、灰渣易于综合利用等优点[7],且由于CFB使用低温燃烧和分级送风使NOx排放明显低于一般的PC炉。尽管目前CFB在能耗等方面不及类似的PC炉,但在资源综合利用和环保性方面两者难分伯仲。由于两种锅炉的现有APCDs有较大差别且煤在锅炉中燃烧方式不同,造成烟气汞在全流程中迁移转化规律不同。本研究选取某地区典型CFB和PC燃煤电厂,采用美国环保署推荐的30B法对两电厂APCDs全流程烟气汞进行采样分析,并同时分析全流程系统中投入产出固体液体样品汞含量,以期获得CFB与PC炉超低排放改造下烟气汞迁移转化、排放数据,为下一步促进燃煤电厂汞脱除,优化汞排放策略提供理论依据。
1. 实验部分
1.1 测试电厂超低排放路线
选取的CFB电厂为600 MW超临界机组,锅炉为DG1900/25.4-Ⅱ9型超临界直流炉,单炉膛双布风板、H型布置、平衡通风、一次中间再热、循环流化床燃烧方式,采用外置式换热器调节床温及再热蒸汽温度,采用高温冷却式旋风分离器进行气固分离。锅炉整体呈左右对称布置,支吊在锅炉钢架上。该机组采用炉内石灰石喷射方法进行初次脱硫,采用静电除尘器(ESP)进行初次除尘,采用湿式脱硫装置(WFGD)进行再次脱硫,采用布袋除尘器(FF)进行再次除尘。由于WFGD与FF间未布置采样孔,故无法测定该点位汞浓度及形态。
选取的PC电厂为1000 MW等级燃煤汽轮发电机组,锅炉为DG3035/29.3-Ⅱ3型超超临界锅炉,锅炉为提升参数后的超超临界参数、一次中间再热变压运行直流炉,采用平衡通风、单炉膛、前后墙对冲燃烧方式、固态排渣、露天布置、全钢构架悬吊结构Ⅱ型锅炉。该机组采用选择性催化还原装置(SCR)进行脱硝,静电除尘器(ESP)进行除尘,采用湿式脱硫装置(WFGD)进行脱硫。
1.2 汞采样及分析方法
利用美国环保署推荐的EPA 30B的采样方法对烟气中的气态汞(Hg0、Hg2+)进行采集,取样装置主要由取样台、一对硫酸钙干燥剂、一个取样探头、热电偶、风机和吸附管组成。吸附管前部分采用KCl吸附烟气中的Hg2+,在后部分中,利用活性炭吸附烟气中的Hg0。每次采样取平行样两组,减小测量误差。采样前首先检查取样枪的整体气密性,并将枪加热到110 ℃左右,防止取样时汞蒸气凝结,气态汞采样时间为0.5 h,烟气流量为0.5 L/min。颗粒汞(Hgp)采用全自动烟气采样器(青岛崂应3012H),根据等速采样原理,即烟气进入采样喷嘴的速率等于采样位置的烟气速率,用来收集烟气中的总尘。汞吸附管所测得的Hg0、Hg2+及固体样品汞含量使用LUMEX RA915M塞曼效应汞分析仪及固体配件进行测试,液体样品使用Milestone DMA-80测汞仪进行测试。
图 1
CFB锅炉在75%负荷(450 MW)下对三个测点(炉膛出口、ESP出口、WFGD出口)进行烟气汞(Hg0、Hg2+、HgP)采样,烟气汞采样同时,对入炉煤、飞灰、底渣、工艺水、石灰石进行采样,具体位置见图1。PC炉在68%负荷(680 MW)下对四个测点(炉膛出口、SCR出口、ESP出口、WFGD出口)进行烟气汞(Hg0、Hg2+、HgP)采样,烟气汞采样同时,对入炉煤、飞灰、底渣、工艺水、石灰石、脱硫废水、石膏进行采样,具体位置见图2。
图 2
1.3 煤质分析
表1为实验工况下锅炉入炉煤粉的工业分析及元素分析,在测试期间,两电厂煤样汞含量均低于中国煤中汞含量平均值200 ng/g。
表 1
Coal sample Proximate analysis/% Ultimate analysis /% Mercury content
/(ng·g−1)M A V FC C H O N S CFB 8.91 15.07 25.35 50.67 68.06 4.22 25.82 0.94 0.96 117.40 PC 11.11 17.71 30.57 40.61 68.87 4.71 24.20 1.27 0.95 158.66 2. 结果与讨论
2.1 汞质量平衡计算及烟气汞浓度
汞质量平衡指全流程系统投入的汞原则上应等于产出的汞。采用系统产出的汞与投入的汞比值作为汞质量平衡率,以此作为汞迁移转化、排放测试结果准确性的判断依据。根据入炉煤量、工艺水量、石灰石量可以得到单位时间内进入全流程系统的总汞质量流量,根据烟气量、飞灰量、底渣量、脱硫废水量、石膏量可以得到单位时间内产出总汞质量流量。
CFB及PC电厂固体液体样汞含量如表2所示,汞质量平衡计算如表3、4所示。由于锅炉负荷波动、测试等不确定因素影响,导致汞质量平衡在一定程度上存在偏差,根据文献,误差在70%−130%都可以接受[8],认为采样数据可信。由表3、4计算可知,CFB及PC电厂汞质量平衡率分别为104.62%与103.55%,均在可信范围内。
CFB及PC电厂各采样点烟气汞含量如表5、6(总汞用HgT表示)及图3、4所示。结合表3及表4可知,底渣中汞所占比例较少,入炉煤中的汞绝大部分转化为颗粒态汞进入烟道,经过APCDs后,汞主要富集在飞灰中,烟气中汞仅占汞输出量的4.95%−11.64%,说明气态汞在经过APCDs时形态及含量均发生了不同程度的变化,现有APCDs对汞排放控制具有协同脱除效果。
表 2
表 2 CFB及PC电厂固体液体样汞含量Table 2. Mercury concentration of solid and liquid samples in CFB and PC power plantsCoal sample w/(μg·kg−1) w/(μg·L−1) coal bottom ash fly ash limestone gypsum water waste water CFB 117.4 ± 5.67 0.58 ± 0.04 455 ± 5.74 15.28 ± 0.28 − 0 − PC 158.66 ± 3.48 27.08 ± 0.85 211.70 ± 2.64 0 429.47 ± 8.41 0 0 表 3
Sample Mercury input/Mercury output/(mg·h−1) Proportion/% Mercury input coal 22118.16 98.24 limestone 396.67 1.76 water 0 0.00 total 22514.83 100.00 Mercury output tail gas 2742.35 11.64 fly ash 20802.60 88.31 bottom ash 10.94 0.05 total 23555.89 100.00 Mercury mass balance rate 104.62% 表 4
Sample Mercury input/Mercury output/(mg·h−1) Proportion/% Mercury input coal 37205.77 100.00 limestone 0 0.00 water 0 0.00 total 37205.77 100.00 Mercury output tail gas 1906.34 4.95 fly ash 29786.19 77.31 gypsum 4294.70 11.15 waste water 0 0.00 bottom ash 2540.10 6.59 total 38527.34 100.00 Mercury mass balance rate 103.55% 表 5
表 5 CFB电厂各采样点烟气汞含量Table 5. Mercury concentration in flue gas at each sampling point of CFB power plantFurnace outlet ESP outlet WFGD outlet Hg0/(μg·m−3) 2.95 ± 0.32 0.43 ± 0.12 0.82 ± 0.22 Hg2+/(μg·m−3) 1.97 ± 0.22 3.43 ± 0.67 1.03 ± 0.25 HgP/(μg·m−3) 10.56 ± 1.03 − − HgT/(μg·m−3) 15.48 ± 1.57 3.86 ± 0.79 1.85 ± 0.47 表 6
表 6 PC电厂各采样点烟气汞含量Table 6. Mercury concentration in flue gas at each sampling point of PC power plantFurnace outlet SCR outlet ESP outlet WFGD outlet Hg0/(μg·m−3) 3.90 ± 0.43 0.61 ± 0.13 0.62 ± 0.13 0.47 ± 0.09 Hg2+/(μg·m−3) 0.23 ± 0.09 0.53 ± 0.11 0.57 ± 0.12 0.63 ± 0.13 HgP/(μg·m−3) 5.35 ± 0.57 10.57 ± 1.09 − − HgT/(μg·m−3) 9.48 ± 1.09 11.71 ± 1.33 1.19 ± 0.25 1.10 ± 0.22 图 3
图 4
2.2 SCR的协同脱汞性能分析
近年来,关于SCR对燃煤电厂汞排放协同控制的研究成为热点。Cao等[9]通过测试发现SCR对于Hg0的氧化能力取决于HC1的含量。王铮等[10]的研究表明,SCR进口出口处总汞含量几乎不会发生变化,说明SCR对总汞脱除效果可以忽略,但在这个过程中汞的形态却发生了变化。同样地,许月阳等[11,12]其他学者也得出了类似结论,SCR可以通过促进汞形态的转变进而有利于后续过程中其他设备对不同形态汞的脱除。
由于CFB电厂采用SNCR装置脱硝,在脱硝装置前无采样孔,故本节只分析PC电厂SCR对烟气汞浓度及形态的影响,见图5所示。SCR进、出口总汞质量浓度分别为9.48、11.71 μg/m3,SCR进出口总汞质量浓度几乎相近,这说明SCR对总汞的脱除效果可以忽略,而汞的形态分布却发生了比较大的变化,可以看到,SCR出口HgP所占比例较SCR进口处的56.43%提高至90.26%,Hg0由进口处的41.14%下降至5.21%,Hg2+略有提高,变化不大。这与陈磊等[13]研究结果相同,在经过SCR后,绝大部分Hg0转化为HgP,这是由于SCR催化剂可以有效促进Hg0氧化为Hg2+,而伴随着非均相反应的发生,增多的Hg2+更容易被飞灰颗粒吸附,从而使汞富集在飞灰表面。相关研究表明,在SCR对于汞形态转变中,烟气中的HC1首先被吸附在SCR催化剂上,生成具有强活性的中间产物(V-C1化合物),然后活性Cl氧化Hg0,促进了Hg0的氧化[14],其中,HCl在SCR催化剂上的吸附是对SCR氧化Hg0效率的关键影响因素[15, 16]。Hg2+易溶于水,且与Hg0相比更容易被飞灰捕获,因此,烟气中通过SCR转化的Hg2+最终会被后续装置脱除。尽管SCR不能直接脱除汞,但是SCR系统对Hg0的氧化有利于促进其他污染物控制装置对汞的协同脱除。PC电厂对于Hg0的氧化效率达到84.36%,高于文献[17-19]中所报道的数据,这是由于SCR对Hg0的氧化效率取决于烟气在催化剂上的停留时间、HCl含量、SCR装置中NO/NH3比值等参数。
图 5
2.3 ESP的协同脱汞性能分析
ESP目前被广泛使用于中国燃煤电厂中,一般来说,ESP可以脱除烟道中绝大多数的颗粒物,而附着在飞灰上的Hgp也会随之脱除。然而ESP对颗粒物的脱除效率也与很多因素相关,有学者认为,不同电厂煤中汞、氯含量、碱金属氧化物含量、飞灰含碳量等因素决定了ESP对汞的脱除效率[20]。Yokoyama等[21]对日本某700 MW电厂ESP对汞控制效果进行测试发现汞的平均脱除率仅有26%左右,而Fthenakis等[22]测试结果表明,ESP对于汞的脱除效率达不到20%。
CFB及PC电厂ESP对烟气汞含量及形态的影响如图6所示。CFB电厂ESP进、出口总汞质量浓度分别为15.48、3.86 μg/m3,汞脱除率达到75.06%;PC电厂ESP进、出口总汞质量浓度分别为11.71、1.19 μg/m3,汞脱除率达到89.84%,Hgp几乎全部得到脱除。CFB电厂Hg0质量浓度由ESP进口处的2.95 μg/m3下降至0.43 μg/m3,而Hg2+质量浓度由1.97 μg/m3上升至3.43 μg/m3,王运军等[20]测试得到相同结论,这可能是由于烟气中的HCl将Hg0氧化为Hg2+。PC电厂ESP进、出口Hg0及Hg2+质量浓度基本保持一致,由于经过SCR后,大多Hg0被氧化为Hg2+且伴随着非均相反应的发生,其更容易被飞灰颗粒吸附,从而使汞富集在飞灰表面,陈磊等[13]也观察到相同现象。在经过ESP后,Hgp随着颗粒物被脱除,Hg0及Hg2+所占烟气汞质量浓度比例上升。
图 6
2.4 WFGD的协同脱汞性能分析
中国燃煤电厂普遍安装了WFGD装置来控制SO2的排放,由于烟气温度的下降,Hg2+等可溶性重金属被洗涤液脱除。杨宏旻等[23]通过对两台500 MW电厂进行现场测试得到WFGD对烟气中Hg2+的脱除效率高达89.24%−99.1%的结论,胡长兴等[24]对六组燃煤电厂WFGD脱汞性能进行测试,发现WFGD装置可以使Hg形态发生较大变化,Hg2+几乎全被捕获,烟道中以Hg0为主,李志超等[25]也得到了类似结果。
CFB及PC电厂WFGD对烟气汞质量浓度及形态的影响如图7所示。CFB电厂WFGD进、出口总汞质量浓度分别为3.86、1.85 μg/m3,汞脱除率达到52.07%;PC电厂WFGD进、出口总汞质量浓度分别为1.19、1.1 μg/m3,汞脱除率为7.56%。CFB电厂Hg2+质量浓度由WFGD进口处的3.34 μg/m3下降至1.03 μg/m3,明显下降,这是由于Hg2+具有水溶性,在经过WFGD过程中被洗涤液所吸收。经过WFGD后的Hg0质量浓度略微上升,这可能由于,当烟气经过WFGD时,烟气中的Hg2+与Hg0会在石灰或石灰石浆液蒸发形成的水膜上发生反应生成
,浆液中的OH−与反应生成HgO与Hg0,而HgO也会与SO2反应,被还原为Hg0,造成Hg0质量浓度略微上升的现象[11, 25]。PC电厂在经过WFGD后Hg2+质量浓度由0.57 μg/m3变为0.63 μg/m3,这可能是由于WFGD对于低质量浓度Hg2+脱除能力有限、低质量浓度汞测试误差较大等原因所造成。Hg2+2 图 7
2.5 APCDs的协同脱汞性能分析
CFB及PC电厂APCDs对烟气汞质量浓度及形态的影响如图8所示。CFB电厂炉膛出口、WFGD出口总汞质量浓度分别为15.48、1.85 μg/m3,汞脱除率达到88.05%;PC电厂炉膛出口、WFGD出口总汞质量浓度分别为9.48、1.1 μg/m3,汞脱除率达到88.40%。各污染物控制装置脱汞机理如上所述,可以看到,CFB及PC电厂虽然配备了不同的APCDs,且其对烟气汞迁移转化效果不同,但脱汞效率均达到了88%以上,电厂最终排放烟气汞质量浓度明显低于《火电厂大气污染物排放标准》中汞及其化合物30 μg/m3的排放限值。
图 8
3. 结 论
研究了600 MW CFB电厂和1000 MW PC电厂汞迁移转化规律,通过对烟气汞及固体液体取样分析结果分析,CFB及PC电厂汞质量平衡率分别为104.62%与103.55%,均在可信范围内。对于固相副产物,CFB电厂汞绝大部分富集于飞灰中,而PC电厂汞在飞灰、炉渣、脱硫石膏中均有分布。
SCR进出口总汞质量浓度几乎相近,而汞的形态分布却发生了比较大的变化,SCR系统对Hg0的氧化有利于促进其他污染物控制装置对汞的协同脱除;CFB及PC电厂ESP对HgT的脱除率分别达到75.06%与89.84%;CFB及PC电厂WFGD对HgT的脱除率分别达到52.07%与7.56%。
烟气经过CFB及PC电厂现有污染物控制装置后,总汞脱除率均达到88%以上,电厂排放烟气汞质量浓度分别为1.85 μg/m3及1.10 μg/m3,明显低于中国现行排放标准要求,在现有设备条件下即可实现汞的达标排放。
-
-
[1]
J. Li, J. Fleetwood, W.B. Hawley, W. Kays, Chem. Rev. 122 (2022) 903–956. doi: 10.1021/acs.chemrev.1c00565
-
[2]
Y. Wang, X. Zhang, Z. Chen, Appl. Energy 313 (2022) 118832.
-
[3]
J. Xu, X. Cai, S. Cai, et al., Energy Environ. Mater. 6 (2023) e12450.
-
[4]
S. Li, K. Wang, G. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2200796.
-
[5]
J. Li, Y. Hu, H. Xie, et al., Angew. Chem. Int. Ed. 61 (2022) e202208291.
-
[6]
J. Wang, Z. Xu, J. Eloi, M. Titirici, S.J. Eichhorn, Adv. Funct. Mater. 32 (2022) 2110862.
-
[7]
J. Li, Y. Yi, X. Zuo, et al., ACS Nano 16 (2022) 3163–3172. doi: 10.1021/acsnano.1c10857
-
[8]
X. Xu, F. Li, D. Zhang, et al., Adv. Sci. 9 (2022) 2200247.
-
[9]
J. Sun, R. Tian, Y. Man, Y. Fei, X. Zhou, Chin. Chem. Lett. 34 (2023) 108233.
-
[10]
J.M. Cao, K.Y. Zhang, J.L. Yang, Z.Y. Gu, X.L. Wu, Chin. Chem. Lett. 35 (2024) 109304.
-
[11]
J. Zhan, Z. Lei, X. Liu, et al., Carbon 192 (2022) 93–100.
-
[12]
Y. Wu, X. Wu, Y. Guan, et al., New Carbon Mater. 37 (2022) 852–874. doi: 10.3390/land11060852
-
[13]
Q. Deng, R. Wang, B. Gou, et al., J. Electroanal. Chem. 922 (2022) 116727.
-
[14]
Z. Zhang, Y. Zhao, Y. Wei, et al., Chin. Chem. Lett. 35 (2024) 109106.
-
[15]
Y. Zhu, Y. Wang, Y. Wang, T. Xu, P. Chang, Carbon Ener. 4 (2022) 1182–1213.
-
[16]
Y. Yang, J. Wang, S. Liu, et al., Chem. Eng. J. 435 (2022) 134746.
-
[17]
K. Qian, Z. Mu, X. Wang, et al., Ceram. Int. 49 (2023) 4273–4280.
-
[18]
G. Nie, Z. Huang, S. Ding, et al., ACS Appl. Nano Mater. 5 (2022) 2616–2625. doi: 10.1021/acsanm.1c04285
-
[19]
X. Kang, W. Xu, X. Duan, J. Phys. Condens. Matter. 34 (2022) 094004. doi: 10.1088/1361-648x/ac3db5
-
[20]
Y. Liu, Q. Wan, J. Gong, et al., Small 19 (2023) 2206400.
-
[21]
L. Jing, J. Sun, C. Sun, et al., Nano Res. 16 (2023) 473–480. doi: 10.1007/s12274-022-4721-8
-
[22]
R. Tian, L. Duan, Y. Xu, et al., Energy Environ. Mater. 6 (2023) e12617.
-
[23]
Y. Gao, X. Chen, X. Zhao, et al., Energy Fuels 37 (2023) 6177–6185. doi: 10.1021/acs.energyfuels.2c04304
-
[24]
T. Mao, F. Zhou, K. Han, et al., J. Phys. Chem. Solids 169 (2022) 110838.
-
[25]
S. Li, J. Qin, T. Gao, et al., J. Alloy. Compd. 912 (2022) 165130.
-
[26]
X. Liu, H. Tao, C. Tang, X. Yang, Chem. Eng. J. 248 (2022) 117200.
-
[27]
C. Gao, Q. Wang, S. Luo, et al., J. Power Sources 415 (2019) 165–171.
-
[28]
M. Tao, G. Du, Y. Zhang, et al., Chem. Eng. J 369 (2019) 828–833.
-
[29]
H. Tong, S. Chen, J. Tu, et al., J. Power Sources 549 (2022) 232140.
-
[30]
Z. Li, R. Sun, Z. Qin, et al., Mater. Chem. Front. 5 (2021) 4401–4423. doi: 10.1039/d1qm00085c
-
[31]
R. Guo, L. Li, B. Wang, et al., Energy Stor. Mater. 37 (2021) 8–39.
-
[32]
X. Yang, X. Zheng, H. Li, et al., Adv Funct. Mater. 32 (2022) 2200397.
-
[33]
H. Li, Y. Wen, M. Jiang, et al., Adv. Funct. Mater. 31 (2021) 2011289.
-
[34]
Y. Yao, J. Wu, Q. Feng, et al., Small 19 (2023) 2302015.
-
[35]
Y. Gong, J. Li, K. Yang, et al., Nano-Micro Lett. 15 (2023) 150.
-
[36]
H. Zhang, R. Guo, S. Li, et al., Nano Energy 92 (2022) 106752.
-
[37]
S.Y. Liao, J. Chen, S.F. Cui, et al., J. Power Sources 553 (2023) 232265.
-
[38]
Y. Xu, E. Matios, J. Luo, et al., Nano Lett. 21 (2021) 816–822. doi: 10.1021/acs.nanolett.0c04566
-
[39]
M.G. Giordano, G. Seganti, M. Bartoli, A. Tagliaferro, Molecules 28 (2023) 2772. doi: 10.3390/molecules28062772
-
[40]
M. Javed, A.N.S. Saqib, Ata-ur-Rehman, et al., Electrochim. Acta 297 (2019) 250–257.
-
[41]
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27 (2015) 7861–7866. doi: 10.1002/adma.201503816
-
[42]
A. Gaurav, A. Jain, S.K. Tripathi, Mater. 15 (2022) 7888. doi: 10.3390/ma15227888
-
[43]
Y. Zhang, L. Yang, Y. Tian, et al., Mater. Chem. Phys. 229 (2019) 303–309.
-
[44]
R. Guo, L. Li, B. Wang, et al., Energy Stor. Mater. 37 (2021) 8–39 7.
-
[45]
Y. Guo, Y. Feng, H. Li, et al., Carbon 189 (2022) 142–151.
-
[46]
F. Xie, L. Zhang, C. Ye, M. Jaroniec, S. Qiao, Adv. Mater. 31 (2019) 1800492.
-
[47]
L. Ma, B. Hou, H. Zhang, et al., Chem. Eng. J. 453 (2023) 139735.
-
[48]
W. Hong, Y. Zhang, L. Yang, et al., Nano Energy 65 (2019) 104038.
-
[49]
Y. Wang, J. Liu, X. Chen, et al., Carbon 189 (2022) 46–56.
-
[50]
Y. Wang, R. Wang, H. Zhu, et al., Adv. Mater. Technol. 8 (2023) 2300435.
-
[51]
T. Xu, Y. Wang, Z. Xiong, et al., Nano-Micro Lett. 15 (2023) 6.
-
[52]
S. Panda, K. Deshmukh, S.K. Khadheer Pasha, et al., Coordin. Chem. Rev. 462 (2022) 214518.
-
[53]
D. Sha, C. Lu, W. He, et al., ACS Nano 16 (2022) 2711–2720. doi: 10.1021/acsnano.1c09639
-
[54]
Y.S. Liu, Y.L. Bai, X. Liu, et al., Chem. Eng. J 378 (2019) 122208.
-
[55]
H. Min, X. Zhang, H. Shu, et al., J. Alloy. Compd. 888 (2021) 161498.
-
[56]
S. Bak, R. Qiao, W. Yang, et al., Adv. Energy Mater. 7 (2017) 1700959.
-
[57]
R.J. Liu, L.X. Yang, J.T. Wu, et al., Electrochim. Acta 403 (2022) 139674.
-
[58]
S. Kanade, M. Gautam, A. Ambalkar, et al., ACS Appl. Energy Mater. 5 (2022) 1972–1983. doi: 10.1021/acsaem.1c03496
-
[59]
H. Wu, Z. Zhang, M. Qin, et al., Chem. Eng. J. 404 (2021) 126315.
-
[60]
L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, Electrochim. Acta 343 (2020) 136138.
-
[61]
Y. Long, J. Yang, X. Gao, et al., ACS Appl. Mater. Interfaces 10 (2018) 10945–10954. doi: 10.1021/acsami.8b00931
-
[62]
X. Zhang, Q. He, X. Xu, et al., Adv. Energy Mater. 10 (2020) 1904118.
-
[63]
W. Kang, Y. Wang, C. An, New J. Chem. 44 (2020) 20659–20664. doi: 10.1039/d0nj04314a
-
[64]
Q. Yao, J. Zhang, X. Shi, et al., Electrochim. Acta 307 (2019) 118–128.
-
[65]
H. Shan, J. Qin, Y. Ding, et al., Adv. Mater. 33 (2021) 2102471.
-
[66]
Q. Peng, F. Ling, H. Yang, et al., Energy Stor. Mater. 39 (2021) 265–270.
-
[67]
Q. Huang, W. Su, G. Zhong, K. Xu, C. Yang, Chem. Eng. J. 460 (2023) 141875.
-
[68]
S. Deng, Y. Dong, C. Li, et al., Chem. Eng. J. 482 (2024) 148877.
-
[69]
H. Wu, S. Li, X. Yu, J. Colloid Interf. Sci. 653 (2024) 267–276.
-
[70]
H. Gao, T. Zhou, Y. Zheng, et al., Adv. Funct. Mater. 27 (2017) 1702634.
-
[71]
Z. Yan, J. Liu, H. Wei, et al., J. Colloid Interf. Sci. 593 (2021) 408–416.
-
[72]
Y. Qi, Y. Yang, Q. Hou, et al., Chin. Chem. Lett. 32 (2021) 1117–1120.
-
[73]
H. Wu, S. Li, X. Yu, Small 20 (2024) 2311196.
-
[74]
X. Hu, R. Zhu, B. Wang, H. Wang, X. Liu, Chem. Eng. J. 440 (2022) 135819.
-
[75]
S. Liang, Z. Yu, T. Ma, et al., ACS Nano 15 (2021) 14697–14708. doi: 10.1021/acsnano.1c04493
-
[76]
N. Hussain, M. Li, B. Tian, H. Wang, Adv. Mater. 33 (2021) 2102164.
-
[77]
Z. Liu, K. Han, P. Li, et al., Nano-Micro Lett. 11 (2019) 96. doi: 10.18178/ijesd.2019.10.3.1154
-
[78]
C. Long, Z. Peng, J. Huang, et al., New J. Chem. 46 (2022) 11751–11758. doi: 10.1039/d2nj01236g
-
[79]
Y. Liu, Q. Chen, A. Mei, et al., Sustain. Energy Fuels 3 (2019) 831–840. doi: 10.1039/c9se00003h
-
[80]
Y. Cao, Y. Zhang, H. Chen, et al., Adv. Funct. Mater. 32 (2022) 2108574.
-
[81]
X. Zhang, D. Li, Q. Ruan, et al., Mater Today Energy 32 (2023) 101232.
-
[82]
T. Lv, Y. Peng, G. Zhang, et al., Adv. Sci. 10 (2023) 2206907.
-
[83]
X. Xu, F. Xiong, J. Meng, et al., Adv. Funct. Mater. 30 (2020) 1904398.
-
[84]
L. Xu, P. Xiong, L. Zeng, et al., Nanoscale 12 (2020) 10693–10702. doi: 10.1039/c9nr10211f
-
[85]
H. Wu, Q. Yu, C.Y. Lao, et al., Energy Stor. Mater. 18 (2019) 43–50.
-
[86]
W. Miao, X. Zhao, R. Wang, et al., J. Colloid Interf. Sci. 556 (2019) 432–440.
-
[87]
J. Bai, B. Xi, H. Mao, et al., Adv. Mater. 30 (2018) 1802310.
-
[88]
D. Zhou, J. Yi, X. Zhao, et al., Chem. Eng. J. 413 (2021) 127508.
-
[89]
X. Li, Y. Wu, D. Yan, et al., J. Mater. Chem. A 9 (2021) 16028–16038. doi: 10.1039/d1ta04625j
-
[90]
X. Yang, Y. Gao, L. Fan, et al., Adv. Energy Mater. 13 (2023) 2302589.
-
[91]
H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Nat. Commun. 14 (2023) 2305.
-
[92]
Z. Yan, Z. Huang, H. Zhou, et al., J. Energy Chem. 54 (2021) 571–578.
-
[93]
Z. Yan, Z. Huang, Y. Yao, et al., J. Alloy. Compd. 858 (2021) 158203.
-
[94]
J. Li, N. Wang, J. Deng, W. Qian, W. Chu, J. Mater. Chem. A 6 (2018) 13012–13020. doi: 10.1039/c8ta02417k
-
[95]
Z.L. Wang, D. Xu, H.X. Zhong, et al., Sci. Adv. 1 (2015) e1400035.
-
[96]
J. Huang, X. Lin, H. Tan, B. Zhang, Adv. Energy Mater. 8 (2018) 1703496.
-
[97]
H. Jiang, X. Lin, C. Wei, J. Feng, X. Tian, Small 18 (2022) 2104264.
-
[98]
X. Ge, S. Liu, M. Qiao, et al., Angew. Chem. Int. Ed. 58 (2019) 14578–14583. doi: 10.1002/anie.201908918
-
[99]
H. Wang, Z. Xing, Z. Hu, et al., Appl. Mater. Today 15 (2019) 58–66.
-
[100]
W. Zhang, X. Chen, H. Xu, et al., Chin. J. Chem. 40 (2022) 1585–1591. doi: 10.1002/cjoc.202200042
-
[101]
Z. Li, J. Wen, Y. Cai, et al., Adv. Funct. Mater. 33 (2023) 2300582.
-
[102]
Y. Zhao, X. Ren, Z. Xing, et al., Small 16 (2020) 1905789.
-
[103]
Z. Tong, T. Kang, Y. Wu, et al., Nano Res. 15 (2022) 7220–7226. doi: 10.1007/s12274-022-4398-z
-
[104]
Y. Zhang, M. Li, F. Huang, et al., Appl. Surf. Sci. 499 (2020) 143907.
-
[105]
B. Chen, M. Liang, Q. Wu, et al., Trans. Tianjin Univ. 28 (2022) 6–32.
-
[106]
H. Liu, Z. Wang, Z. Wu, et al., J. Alloy. Compd. 833 (2020) 155127.
-
[107]
X. Guo, H. Gao, S. Wang, et al., Nano Lett. 22 (2022) 1225–1232. doi: 10.1021/acs.nanolett.1c04389
-
[108]
D. Gong, C. Wei, D. Xie, Y. Tang, Chem. Eng. J 431 (2022) 133444.
-
[109]
W. Lyu, X. Yu, Y. Lv, et al., Adv. Mater. 36 (2024) 2305795.
-
[110]
Z. Hu, J. Hao, D. Shen, et al., Green Energy Environ. 9 (2024) 81–88. doi: 10.1007/978-3-031-63139-9_9
-
[1]
-
Figure 1 (a) The synthesized illustration of hard carbon from carbon quantum dots. Reproduced with permission [43]. Copyright 2019, Elsevier. (b) The designed illustration of CQDHC. Reproduced with permission [45]. Copyright 2022, Elsevier. (c) Schematic of the synthesis of N-doped carbon from carbon quantum dots. Reproduced with permission [48]. Copyright 2019, Elsevier.
Figure 2 (a) SEM image and (b) TEM image of Mo2C/NCNFs. (c) Cycle performance (0.1 A/g) and (d) rate performance of Mo2C/NCNFs. (e) Cycle performance of Mo2C/NCNFs at 1 A/g. Reproduced with permission [55]. Copyright 2021, Elsevier.
Figure 3 (a) The diagram of synthesis CVCx-QDs/nFCM. (b) HRTEM image of the CVCx-QDs/nFCM. (c) Rate performance and (d) cycle performance (400 mA/g) of CVCx-QDs/nFCM. Reproduced with permission [59]. Copyright 2021, Elsevier.
Figure 4 (a) SEM image of CoS@G-25. (b) TEM image and (c) dark field image of CoS@G-25. (d) Cycle performance and (e) rate performance of CoS, CoS@G-25, CoS@G-10, and CoS@G-15. Reproduced with permission [70]. Copyright 2017, Wiley.
Figure 5 (a) The synthesized routs of FeS@SPC. (b) TEM image and (c) high-resolution TEM image of FeS@SPC. (d) Rate performance of FeS@SPC. Cycling performance of FeS@SPC at (e) 100 mA/g and (f) 1 A/g. Reproduced with permission [71]. Copyright 2021, Elsevier.
Figure 6 (a) TEM image of FeS@SPC after 3000 cycles at 1 A/g. (b) The models of K+ adsorption behavior on FeS@SPC. Reproduced with permission [71]. Copyright 2021, Elsevier. (c) Synthesis diagram of ZnS QDs-rGO. (d) TEM image of ZnS QDs-rGO. (e) Cycle performance at 0.1 A/g and (f) rate performance of ZnS QDs-rGO. Reproduced with permission [72]. Copyright 2021, Elsevier.
Figure 7 (a) Schematic illustration of synthesis Co3Se4 quantum dots encapsulated by N-doped carbon (CSC). (b) TEM and (c) HRTEM image of CSC. (d) Cycling performance at 0.1 A/g and (e) rate performance of CSC. (f) K+-intercalation reaction energy for Co3Se4 QDs. (g) K+ migration energy barrier and reaction energy for Co3Se4 QDs. Reproduced with permission [76]. Copyright 2021, Wiley.
Figure 8 (a) The synthesis process of Co0.85Se-QDs/C composite. (b) TEM image of Co0.85Se-QDs/C-20. (c) Rate performance of Co0.85Se-QDs/C composite. (d) Cycling stability of Co0.85Se-QDs/C-20 at 1 A/g. Reproduced with permission [77]. Copyright 2019, The authors.
Figure 9 (a) Schematic illustration for synthesis process of Cu12Sb4S13 quantum dots (CAS) and Ti3C2 nanosheets composite (CAS-Ti3C2). TEM image of (b) Cu12Sb4S13 quantum dots and (c) CAS-Ti3C2 composite. (d) Rate performance and (e) cycling stability of CAS-Ti3C2 composite, Cu12Sb4S13 quantum dots and Ti3C2 nanosheets. Reproduced with permission [80]. Copyright 2021, Wiley.
Figure 10 (a) Synthesis routes of the VN/CNF. (b) TEM image of VN/CNF composite. (c) Rate performance of VN/CNF. Reproduced with permission [84]. Copyright 2020, Royal Society of Chemistry. (d) Schematic illustration of the synthesis of the VN-QDs/CM composites. (e) Rate performance of VN-QDS/CM-600. (f) High-resolution TEM image of VN-QDS/CM-600 after 100 cycles. Reproduced with permission [85]. Copyright 2019, Elsevier.
Figure 11 (a) Schematic illustration of the synthesis of the “bubble-in-bowl” (BIB) structured CoP@NPC (CoP@NPC BIB). (b) SEM image and TEM images (c, d) of CoP@NPC BIB. (e) Schematic illustration of the potassium ion hybrid capacitors (PIHCs). (f) Photos of the PIHCs powering an electronic fan. (g) Charging/discharging curves of the PIHCs. (h) Scene diagram of PIHCs working in low-temperature environment. (i) Rate performance of PIHCs at −15 ℃. Reproduced with permission [89]. Copyright 2021, Royal Society of Chemistry.
Figure 12 (a) Schematic illustration of the synthesis of the MoP@PC. (b) SEM image and (c) high-resolution image of MoP@PC. (d) Rate performance of MoP@PC at various current densities from 0.1 A/g to 5 A/g. (e) TEM image of MoP@PC after 1000 cycles at 5 A/g. Reproduced with permission [92]. Copyright 2021, Elsevier. (f) The synthesis routs of Ni2P@NPC. (g) High-resolution TEM image of Ni2P@NPC. Rate performance (h) and long cycling stability (i) at 1 A/g of Ni2P@NPC. Reproduced with permission [93]. Copyright 2021, Elsevier.
Figure 13 (a) TEM and (b) high-resolution TEM of BiND. (c) Rate performance of BiND/G at various current densities from 0.1 A/g to 10 A/g. (d) Comparison of capacity retention rate between BiND/G and other anode electrode materials for potassium ion battery. Reproduced with permission [102]. Copyright 2019, Wiley. (e) The synthesis routes of Bi:Co and Bi:Fe alloys nanodots and carbon composites. (f) HRTEM image of Bi0.85Co0.15@C composites. (g) Rate performance of Bi:Co@C. (h) Schematic diagram of the PTCDA-0C//Bi0.85Co0.15@C potassium ion full battery. (i) Cycling stability of the full potassium ion batteries. Reproduced with permission [103]. Copyright 2022, Springer.
Figure 14 (a) Schematic illustration of the Sb SQ@MA composite. (b) HRTEM image and (c) high-angle annular dark-field (HAADF) image of Sb SQ@MA composite. (d) Rate performance and (e) cycling stability at 1 A/g of Sb SQ@MA electrode. (f) In situ XRD patterns of Sb SQ@MA electrode. Reproduced with permission [107]. Copyright 2022, American Chemical Society. (g) Schematic illustration of the synthesis routes for Sb@NCNWs. (h) SEM image and (i) HRTEM image of Sb@NCNWs. (j) The working mechanism of potassium dual-ion batteries (PDIBs) composed of Sb@NCNWs anode and EG cathode. (k) Rate performance of the PDIBs at various current densities. Reproduced with permission [108]. Copyright 2022, Elsevier.
-
计量
- PDF下载量: 1
- 文章访问数: 88
- HTML全文浏览量: 3