Citation: Zhanheng Yan, Weiqing Su, Weiwei Xu, Qianhui Mao, Lisha Xue, Huanxin Li, Wuhua Liu, Xiu Li, Qiuhui Zhang. Carbon-based quantum dots/nanodots materials for potassium ion storage[J]. Chinese Chemical Letters, ;2025, 36(4): 110217. doi: 10.1016/j.cclet.2024.110217 shu

Carbon-based quantum dots/nanodots materials for potassium ion storage

Figures(14)

  • With the rapid development of electric vehicles, hybrid electric vehicles and smart grids, people's demand for large-scale energy storage devices is increasingly intense. As a new type of secondary battery, potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness. At present, the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials. Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved. Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs. In addition, quantum dots/nanodots materials can enhance the electrode reaction kinetics, reduce the stress generated in cycling, and effectively alleviate the agglomeration and crushing of electrode materials. In this review, we will systematically introduce the synthesis methods, K+ storage properties and K+ storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites. This review will have significant references for potassium ion battery researchers.
  • 加载中
    1. [1]

      J. Li, J. Fleetwood, W.B. Hawley, W. Kays, Chem. Rev. 122 (2022) 903–956.  doi: 10.1021/acs.chemrev.1c00565

    2. [2]

      Y. Wang, X. Zhang, Z. Chen, Appl. Energy 313 (2022) 118832.

    3. [3]

      J. Xu, X. Cai, S. Cai, et al., Energy Environ. Mater. 6 (2023) e12450.

    4. [4]

      S. Li, K. Wang, G. Zhang, et al., Adv. Funct. Mater. 32 (2022) 2200796.

    5. [5]

      J. Li, Y. Hu, H. Xie, et al., Angew. Chem. Int. Ed. 61 (2022) e202208291.

    6. [6]

      J. Wang, Z. Xu, J. Eloi, M. Titirici, S.J. Eichhorn, Adv. Funct. Mater. 32 (2022) 2110862.

    7. [7]

      J. Li, Y. Yi, X. Zuo, et al., ACS Nano 16 (2022) 3163–3172.  doi: 10.1021/acsnano.1c10857

    8. [8]

      X. Xu, F. Li, D. Zhang, et al., Adv. Sci. 9 (2022) 2200247.

    9. [9]

      J. Sun, R. Tian, Y. Man, Y. Fei, X. Zhou, Chin. Chem. Lett. 34 (2023) 108233.

    10. [10]

      J.M. Cao, K.Y. Zhang, J.L. Yang, Z.Y. Gu, X.L. Wu, Chin. Chem. Lett. 35 (2024) 109304.

    11. [11]

      J. Zhan, Z. Lei, X. Liu, et al., Carbon 192 (2022) 93–100.

    12. [12]

      Y. Wu, X. Wu, Y. Guan, et al., New Carbon Mater. 37 (2022) 852–874.  doi: 10.3390/land11060852

    13. [13]

      Q. Deng, R. Wang, B. Gou, et al., J. Electroanal. Chem. 922 (2022) 116727.

    14. [14]

      Z. Zhang, Y. Zhao, Y. Wei, et al., Chin. Chem. Lett. 35 (2024) 109106.

    15. [15]

      Y. Zhu, Y. Wang, Y. Wang, T. Xu, P. Chang, Carbon Ener. 4 (2022) 1182–1213.

    16. [16]

      Y. Yang, J. Wang, S. Liu, et al., Chem. Eng. J. 435 (2022) 134746.

    17. [17]

      K. Qian, Z. Mu, X. Wang, et al., Ceram. Int. 49 (2023) 4273–4280.

    18. [18]

      G. Nie, Z. Huang, S. Ding, et al., ACS Appl. Nano Mater. 5 (2022) 2616–2625.  doi: 10.1021/acsanm.1c04285

    19. [19]

      X. Kang, W. Xu, X. Duan, J. Phys. Condens. Matter. 34 (2022) 094004.  doi: 10.1088/1361-648x/ac3db5

    20. [20]

      Y. Liu, Q. Wan, J. Gong, et al., Small 19 (2023) 2206400.

    21. [21]

      L. Jing, J. Sun, C. Sun, et al., Nano Res. 16 (2023) 473–480.  doi: 10.1007/s12274-022-4721-8

    22. [22]

      R. Tian, L. Duan, Y. Xu, et al., Energy Environ. Mater. 6 (2023) e12617.

    23. [23]

      Y. Gao, X. Chen, X. Zhao, et al., Energy Fuels 37 (2023) 6177–6185.  doi: 10.1021/acs.energyfuels.2c04304

    24. [24]

      T. Mao, F. Zhou, K. Han, et al., J. Phys. Chem. Solids 169 (2022) 110838.

    25. [25]

      S. Li, J. Qin, T. Gao, et al., J. Alloy. Compd. 912 (2022) 165130.

    26. [26]

      X. Liu, H. Tao, C. Tang, X. Yang, Chem. Eng. J. 248 (2022) 117200.

    27. [27]

      C. Gao, Q. Wang, S. Luo, et al., J. Power Sources 415 (2019) 165–171.

    28. [28]

      M. Tao, G. Du, Y. Zhang, et al., Chem. Eng. J 369 (2019) 828–833.

    29. [29]

      H. Tong, S. Chen, J. Tu, et al., J. Power Sources 549 (2022) 232140.

    30. [30]

      Z. Li, R. Sun, Z. Qin, et al., Mater. Chem. Front. 5 (2021) 4401–4423.  doi: 10.1039/d1qm00085c

    31. [31]

      R. Guo, L. Li, B. Wang, et al., Energy Stor. Mater. 37 (2021) 8–39.

    32. [32]

      X. Yang, X. Zheng, H. Li, et al., Adv Funct. Mater. 32 (2022) 2200397.

    33. [33]

      H. Li, Y. Wen, M. Jiang, et al., Adv. Funct. Mater. 31 (2021) 2011289.

    34. [34]

      Y. Yao, J. Wu, Q. Feng, et al., Small 19 (2023) 2302015.

    35. [35]

      Y. Gong, J. Li, K. Yang, et al., Nano-Micro Lett. 15 (2023) 150.

    36. [36]

      H. Zhang, R. Guo, S. Li, et al., Nano Energy 92 (2022) 106752.

    37. [37]

      S.Y. Liao, J. Chen, S.F. Cui, et al., J. Power Sources 553 (2023) 232265.

    38. [38]

      Y. Xu, E. Matios, J. Luo, et al., Nano Lett. 21 (2021) 816–822.  doi: 10.1021/acs.nanolett.0c04566

    39. [39]

      M.G. Giordano, G. Seganti, M. Bartoli, A. Tagliaferro, Molecules 28 (2023) 2772.  doi: 10.3390/molecules28062772

    40. [40]

      M. Javed, A.N.S. Saqib, Ata-ur-Rehman, et al., Electrochim. Acta 297 (2019) 250–257.

    41. [41]

      H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27 (2015) 7861–7866.  doi: 10.1002/adma.201503816

    42. [42]

      A. Gaurav, A. Jain, S.K. Tripathi, Mater. 15 (2022) 7888.  doi: 10.3390/ma15227888

    43. [43]

      Y. Zhang, L. Yang, Y. Tian, et al., Mater. Chem. Phys. 229 (2019) 303–309.

    44. [44]

      R. Guo, L. Li, B. Wang, et al., Energy Stor. Mater. 37 (2021) 8–39 7.

    45. [45]

      Y. Guo, Y. Feng, H. Li, et al., Carbon 189 (2022) 142–151.

    46. [46]

      F. Xie, L. Zhang, C. Ye, M. Jaroniec, S. Qiao, Adv. Mater. 31 (2019) 1800492.

    47. [47]

      L. Ma, B. Hou, H. Zhang, et al., Chem. Eng. J. 453 (2023) 139735.

    48. [48]

      W. Hong, Y. Zhang, L. Yang, et al., Nano Energy 65 (2019) 104038.

    49. [49]

      Y. Wang, J. Liu, X. Chen, et al., Carbon 189 (2022) 46–56.

    50. [50]

      Y. Wang, R. Wang, H. Zhu, et al., Adv. Mater. Technol. 8 (2023) 2300435.

    51. [51]

      T. Xu, Y. Wang, Z. Xiong, et al., Nano-Micro Lett. 15 (2023) 6.

    52. [52]

      S. Panda, K. Deshmukh, S.K. Khadheer Pasha, et al., Coordin. Chem. Rev. 462 (2022) 214518.

    53. [53]

      D. Sha, C. Lu, W. He, et al., ACS Nano 16 (2022) 2711–2720.  doi: 10.1021/acsnano.1c09639

    54. [54]

      Y.S. Liu, Y.L. Bai, X. Liu, et al., Chem. Eng. J 378 (2019) 122208.

    55. [55]

      H. Min, X. Zhang, H. Shu, et al., J. Alloy. Compd. 888 (2021) 161498.

    56. [56]

      S. Bak, R. Qiao, W. Yang, et al., Adv. Energy Mater. 7 (2017) 1700959.

    57. [57]

      R.J. Liu, L.X. Yang, J.T. Wu, et al., Electrochim. Acta 403 (2022) 139674.

    58. [58]

      S. Kanade, M. Gautam, A. Ambalkar, et al., ACS Appl. Energy Mater. 5 (2022) 1972–1983.  doi: 10.1021/acsaem.1c03496

    59. [59]

      H. Wu, Z. Zhang, M. Qin, et al., Chem. Eng. J. 404 (2021) 126315.

    60. [60]

      L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, Electrochim. Acta 343 (2020) 136138.

    61. [61]

      Y. Long, J. Yang, X. Gao, et al., ACS Appl. Mater. Interfaces 10 (2018) 10945–10954.  doi: 10.1021/acsami.8b00931

    62. [62]

      X. Zhang, Q. He, X. Xu, et al., Adv. Energy Mater. 10 (2020) 1904118.

    63. [63]

      W. Kang, Y. Wang, C. An, New J. Chem. 44 (2020) 20659–20664.  doi: 10.1039/d0nj04314a

    64. [64]

      Q. Yao, J. Zhang, X. Shi, et al., Electrochim. Acta 307 (2019) 118–128.

    65. [65]

      H. Shan, J. Qin, Y. Ding, et al., Adv. Mater. 33 (2021) 2102471.

    66. [66]

      Q. Peng, F. Ling, H. Yang, et al., Energy Stor. Mater. 39 (2021) 265–270.

    67. [67]

      Q. Huang, W. Su, G. Zhong, K. Xu, C. Yang, Chem. Eng. J. 460 (2023) 141875.

    68. [68]

      S. Deng, Y. Dong, C. Li, et al., Chem. Eng. J. 482 (2024) 148877.

    69. [69]

      H. Wu, S. Li, X. Yu, J. Colloid Interf. Sci. 653 (2024) 267–276.

    70. [70]

      H. Gao, T. Zhou, Y. Zheng, et al., Adv. Funct. Mater. 27 (2017) 1702634.

    71. [71]

      Z. Yan, J. Liu, H. Wei, et al., J. Colloid Interf. Sci. 593 (2021) 408–416.

    72. [72]

      Y. Qi, Y. Yang, Q. Hou, et al., Chin. Chem. Lett. 32 (2021) 1117–1120.

    73. [73]

      H. Wu, S. Li, X. Yu, Small 20 (2024) 2311196.

    74. [74]

      X. Hu, R. Zhu, B. Wang, H. Wang, X. Liu, Chem. Eng. J. 440 (2022) 135819.

    75. [75]

      S. Liang, Z. Yu, T. Ma, et al., ACS Nano 15 (2021) 14697–14708.  doi: 10.1021/acsnano.1c04493

    76. [76]

      N. Hussain, M. Li, B. Tian, H. Wang, Adv. Mater. 33 (2021) 2102164.

    77. [77]

      Z. Liu, K. Han, P. Li, et al., Nano-Micro Lett. 11 (2019) 96.  doi: 10.18178/ijesd.2019.10.3.1154

    78. [78]

      C. Long, Z. Peng, J. Huang, et al., New J. Chem. 46 (2022) 11751–11758.  doi: 10.1039/d2nj01236g

    79. [79]

      Y. Liu, Q. Chen, A. Mei, et al., Sustain. Energy Fuels 3 (2019) 831–840.  doi: 10.1039/c9se00003h

    80. [80]

      Y. Cao, Y. Zhang, H. Chen, et al., Adv. Funct. Mater. 32 (2022) 2108574.

    81. [81]

      X. Zhang, D. Li, Q. Ruan, et al., Mater Today Energy 32 (2023) 101232.

    82. [82]

      T. Lv, Y. Peng, G. Zhang, et al., Adv. Sci. 10 (2023) 2206907.

    83. [83]

      X. Xu, F. Xiong, J. Meng, et al., Adv. Funct. Mater. 30 (2020) 1904398.

    84. [84]

      L. Xu, P. Xiong, L. Zeng, et al., Nanoscale 12 (2020) 10693–10702.  doi: 10.1039/c9nr10211f

    85. [85]

      H. Wu, Q. Yu, C.Y. Lao, et al., Energy Stor. Mater. 18 (2019) 43–50.

    86. [86]

      W. Miao, X. Zhao, R. Wang, et al., J. Colloid Interf. Sci. 556 (2019) 432–440.

    87. [87]

      J. Bai, B. Xi, H. Mao, et al., Adv. Mater. 30 (2018) 1802310.

    88. [88]

      D. Zhou, J. Yi, X. Zhao, et al., Chem. Eng. J. 413 (2021) 127508.

    89. [89]

      X. Li, Y. Wu, D. Yan, et al., J. Mater. Chem. A 9 (2021) 16028–16038.  doi: 10.1039/d1ta04625j

    90. [90]

      X. Yang, Y. Gao, L. Fan, et al., Adv. Energy Mater. 13 (2023) 2302589.

    91. [91]

      H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Nat. Commun. 14 (2023) 2305.

    92. [92]

      Z. Yan, Z. Huang, H. Zhou, et al., J. Energy Chem. 54 (2021) 571–578.

    93. [93]

      Z. Yan, Z. Huang, Y. Yao, et al., J. Alloy. Compd. 858 (2021) 158203.

    94. [94]

      J. Li, N. Wang, J. Deng, W. Qian, W. Chu, J. Mater. Chem. A 6 (2018) 13012–13020.  doi: 10.1039/c8ta02417k

    95. [95]

      Z.L. Wang, D. Xu, H.X. Zhong, et al., Sci. Adv. 1 (2015) e1400035.

    96. [96]

      J. Huang, X. Lin, H. Tan, B. Zhang, Adv. Energy Mater. 8 (2018) 1703496.

    97. [97]

      H. Jiang, X. Lin, C. Wei, J. Feng, X. Tian, Small 18 (2022) 2104264.

    98. [98]

      X. Ge, S. Liu, M. Qiao, et al., Angew. Chem. Int. Ed. 58 (2019) 14578–14583.  doi: 10.1002/anie.201908918

    99. [99]

      H. Wang, Z. Xing, Z. Hu, et al., Appl. Mater. Today 15 (2019) 58–66.

    100. [100]

      W. Zhang, X. Chen, H. Xu, et al., Chin. J. Chem. 40 (2022) 1585–1591.  doi: 10.1002/cjoc.202200042

    101. [101]

      Z. Li, J. Wen, Y. Cai, et al., Adv. Funct. Mater. 33 (2023) 2300582.

    102. [102]

      Y. Zhao, X. Ren, Z. Xing, et al., Small 16 (2020) 1905789.

    103. [103]

      Z. Tong, T. Kang, Y. Wu, et al., Nano Res. 15 (2022) 7220–7226.  doi: 10.1007/s12274-022-4398-z

    104. [104]

      Y. Zhang, M. Li, F. Huang, et al., Appl. Surf. Sci. 499 (2020) 143907.

    105. [105]

      B. Chen, M. Liang, Q. Wu, et al., Trans. Tianjin Univ. 28 (2022) 6–32.

    106. [106]

      H. Liu, Z. Wang, Z. Wu, et al., J. Alloy. Compd. 833 (2020) 155127.

    107. [107]

      X. Guo, H. Gao, S. Wang, et al., Nano Lett. 22 (2022) 1225–1232.  doi: 10.1021/acs.nanolett.1c04389

    108. [108]

      D. Gong, C. Wei, D. Xie, Y. Tang, Chem. Eng. J 431 (2022) 133444.

    109. [109]

      W. Lyu, X. Yu, Y. Lv, et al., Adv. Mater. 36 (2024) 2305795.

    110. [110]

      Z. Hu, J. Hao, D. Shen, et al., Green Energy Environ. 9 (2024) 81–88.  doi: 10.1007/978-3-031-63139-9_9

  • 加载中
    1. [1]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    4. [4]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    5. [5]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    6. [6]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    7. [7]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    8. [8]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    9. [9]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    10. [10]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    11. [11]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    12. [12]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    13. [13]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    19. [19]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    20. [20]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

Metrics
  • PDF Downloads(1)
  • Abstract views(66)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return