Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3
-
* Corresponding authors.
E-mail addresses: dongyanan@sjtu.edu.cn (Y. Dong), helin@licp.cas.cn (L. He), liyuehui@sjtu.edu.cn (Y. Li).
Citation:
Yang Li, Yanan Dong, Zhihong Wei, Changzeng Yan, Zhen Li, Lin He, Yuehui Li. Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3[J]. Chinese Chemical Letters,
;2025, 36(5): 110206.
doi:
10.1016/j.cclet.2024.110206
T. Sakakura, J.C. Choi, H. Yasuda, Chem. Rev. 107 (2007) 2365–2387.
doi: 10.1021/cr068357u
C.D.N. Gomes, et al., Angew. Chem. Int. Ed. 51 (2012) 187–190.
doi: 10.1002/anie.201105516
J. Artz, et al., Chem. Rev. 118 (2018) 434–504.
doi: 10.1021/acs.chemrev.7b00435
M. Aresta, A. Dibenedetto, Dalton Trans. 28 (2007) 2975–2992.
doi: 10.1039/b700658f
G. Bertuzzi, A. Cerveri, L. Lombardi, et al., Chin. J. Chem. 39 (2021) 3116–3126.
doi: 10.1002/cjoc.202100450
J.H. Ye, T. Ju, H. Huang, et al., Acc. Chem. Res. 54 (2021) 2518–2531.
doi: 10.1021/acs.accounts.1c00135
L. Wang, C. Qi, W. Xiong, et al., Chin. J. Catal. 43 (2022) 1598–1617.
doi: 10.1016/S1872-2067(21)64029-9
H. Luo, J. Ren, Y. Sun, et al., Chin. Chem. Lett. 34 (2023) 107782.
doi: 10.1016/j.cclet.2022.107782
Y.Y. Gui, S.S. Yan, W. Wang, et al., Sci. Bull. 68 (2023) 3124–3128.
doi: 10.1016/j.scib.2023.11.018
C.K. Ran, H.Z. Xiao, L.L. Liao, et al., Natl. Sci. Open 2 (2023) 20220024.
doi: 10.1360/nso/20220024
A. Tortajada, F. Juliá-Hernández, M. Börjesson, et al., Angew. Chem. Int. Ed. 57 (2018) 15948–15982.
doi: 10.1002/anie.201803186
Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 6 (2015) 5933.
doi: 10.1038/ncomms6933
Z. Rappoport, Chemistry of The Cyano Group, John Wiley & Sons, London, 1970.
A.J. Fatiadi, S. Patai, Z. Rappoport, Preparation and Synthetic Applications of Cyano Compounds, Wiley-VCH, New York, 1983.
A. Kleemann, J. Engel, B. Kutscher, et al., Pharmaceutical Substance: Synthesis, Patents and Applications of The Most Relevant APIs, fifth ed., Thieme, Stuttgart, 2008.
K. Takagi, T. Okamoto, S. Yasumasa, et al., Bull. Chem. Soc. Jpn. 48 (1975) 3298–3301.
doi: 10.1246/bcsj.48.3298
M.R.I. Chambers, D.A. Widdowson, J. Chem. Soc., Perkin Trans. 1 7 (1989) 1365–1366.
K. Takagi, Y. Sakakibara, Chem. Lett. 18 (1989) 1957–1958.
doi: 10.1246/cl.1989.1957
D.M. Tschaen, R. Desmond, A.O. King, et al., Synth. Commun. 24 (1994) 887–890.
doi: 10.1080/00397919408011310
F.G. Buono, R. Chidambaram, R.H. Mueller, R.E. Waltermire, Org. Lett. 10 (2008) 5325–5328.
doi: 10.1021/ol8016935
P. Ryberg, Org. Process Res. Dev. 12 (2008) 540–543.
doi: 10.1021/op800020r
H. Nakamura, H. Shibata, Y. Yamamoto, Tetrahedron Lett. 41 (2000) 2911–2914.
doi: 10.1016/S0040-4039(00)00284-7
M. Sundermeier, S. Mutyala, A. Zapf, A. Spannenberg, M. Beller, J. Organomet. Chem. 684 (2003) 50–55.
doi: 10.1016/S0022-328X(03)00503-5
M. Sundermeier, A. Zapf, M. Beller, Angew. Chem. Int. Ed. 42 (2003) 1661–1664.
doi: 10.1002/anie.200250778
F. Burg, J. Egger, J. Deutsch, N. Guimond, Org. Process Res. Dev. 20 (2016) 1540–1545.
doi: 10.1021/acs.oprd.6b00229
P. Anbarasan, T. Schareina, M. Beller, Chem. Soc. Rev. 40 (2011) 5049–5067.
doi: 10.1039/c1cs15004a
P.J. Amal Joseph, S. Priyadarshini, Org. Process Res. Dev. 21 (2017) 1889–1924.
doi: 10.1021/acs.oprd.7b00285
G. Yan, Y. Zhang, J. Wang, Adv. Synth. Catal. 359 (2017) 4068–4105.
doi: 10.1002/adsc.201700875
B.M. Rosen, K.W. Quasdorf, D.A. Wilson, et al., Chem. Rev. 111 (2011) 1346–1416.
doi: 10.1021/cr100259t
P.Y. Yeung, C.M. So, C.P. Lau, F.Y. Kwong, Angew. Chem. Int. Ed. 49 (2010) 8918–8922.
doi: 10.1002/anie.201005121
P. Yu, B. Morandi, Angew. Chem. Int. Ed. 56 (2017) 15693–15697.
doi: 10.1002/anie.201707517
R. Takise, K. Itami, J. Yamaguchi, Org. Lett. 18 (2016) 4428–4431.
doi: 10.1021/acs.orglett.6b02265
A. Chatupheeraphat, H.H. Liao, S.C. Lee, M. Rueping, Org. Lett. 19 (2017) 4255–4258.
doi: 10.1021/acs.orglett.7b01905
L.R. Mills, J.M. Graham, P. Patel, S.A.L. Rousseaux, J. Am. Chem. Soc. 141 (2019) 19257–19262.
doi: 10.1021/jacs.9b11208
Y. Ueda, N. Tsujimoto, T. Yurino, et al., Chem. Sci. 10 (2019) 994–999.
doi: 10.1039/c8sc04437f
T.V.Q. Nguyen, W.J. Yoo, S. Kobayashi, Asian J. Org. Chem. 7 (2018), 116–118.
doi: 10.1002/ajoc.201700519
S. Ichii, G. Hamasaka, Y. Uozumi, Chem. Asian J. 14 (2019) 3850–3854.
doi: 10.1002/asia.201901155
H. Wang, Y. Dong, C. Zheng, et al., Chem 4 (2018) 2883–2893.
doi: 10.1016/j.chempr.2018.09.009
Y. Dong, P. Yang, S. Zhao, Y. Li, Nat. Commun. 11 (2020) 4096.
doi: 10.1038/s41467-020-17939-2
W.R. Moser, C.J. Papile, D.A. Brannon, et al., J. Mol. Catal. 41 (1987) 271–292.
doi: 10.1016/0304-5102(87)80106-2
C.P. Casey, E.L. Pausen, E.W. Beuttenmueller, et al., J. Am. Chem. Soc. 119 (1997) 11817–11825.
doi: 10.1021/ja9719440
A.M. Banet Osuna, W. Chen, E.G. Hope, et al., J. Chem. Soc., Dalton Trans. 22 (2000) 4052–4055.
D.F. Foster, D.J. Adams, D. Gudmundsen, et al., J. Chem. Soc., Chem. Commun. 7 (2002) 722–723.
M.L. Clarke, D. Ellis, K.L. Mason, et al., Dalton Trans. 7 (2005) 1294–1300.
doi: 10.1039/b418193j
K. Taniguchi, S. Itagaki, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 52 (2013) 8420–8423.
doi: 10.1002/anie.201303132
I. Nohira, N. Chatani, ACS Catal. 11 (2021) 4644–4649.
doi: 10.1021/acscatal.1c01102
J. Wang, L.E. Ehehalt, Z. Huang, et al., J. Am. Chem. Soc. 145 (2023) 9951–9958.
doi: 10.1021/jacs.2c11552
J.Y. Lee, Y.H. Huang, S.Y. Liu, et al., Chem. Commun. 48 (2012) 5632–5634.
doi: 10.1039/c2cc31299a
J. Lee, B. Kang, D. Kim, et al., J. Am. Chem. Soc. 143 (2021) 18406–18412.
doi: 10.1021/jacs.1c10138
S.Y. Hong, Y. Hwang, M. Lee, S. Chang, Acc. Chem. Res. 54 (2021) 2683–2700.
doi: 10.1021/acs.accounts.1c00198
M. Lee, J. Heo, D. Kim, S. Chang, J. Am. Chem. Soc. 144 (2022) 3667–3675.
doi: 10.1021/jacs.1c12934
Y. Li, Y. Dong, Y. Li, Chin. J. Org. Chem. 44 (2024) 638–643.
doi: 10.6023/cjoc202307020
J.M. Medina, J.L. Mackey, N.K. Garg, et al., J. Am. Chem. Soc. 136 (2014) 15798–15805.
doi: 10.1021/ja5099935
J. Shi, L. Li, Y. Li, Chem. Rev. 121 (2021) 3892–4044.
doi: 10.1021/acs.chemrev.0c01011
I. Mallov, A.J. Ruddy, H. Zhu, et al., Chem. Eur. J. 23 (2017) 17692–17696.
doi: 10.1002/chem.201705276
K. Kikushima, M. Grellier, M. Ohashi, et al., Angew. Chem. Int. Ed. 56 (2017) 16191–16196.
doi: 10.1002/anie.201708003
C.A. Malapit, J.R. Bour, C.E. Brigham, M.S. Sanford, Nature 563 (2018) 100–104.
doi: 10.1038/s41586-018-0628-7
M. Fujita, T. Hiyama, J. Org. Chem. 53 (1988) 5405–5415.
doi: 10.1021/jo00258a003
F.S. Tschernuth, T. Thorwart, L. Greb, et al., Angew. Chem. Int. Ed. 60 (2021) 25799–25803.
doi: 10.1002/anie.202110980
Y. Gan, G. Wang, X. Xie, et al., J. Org. Chem. 83 (2018) 14036–14048.
doi: 10.1021/acs.joc.8b02498
H. Chen, S. Sun, Y.A. Liu, et al., ACS Catal. 10 (2020) 1397–1405.
doi: 10.1021/acscatal.9b04586
T. Hanada, Y. Hashizume, N. Tokuhara, et al., Epilepsia 52 (2011) 1331–1340.
doi: 10.1111/j.1528-1167.2011.03109.x
I. Arimoto, S. Nagato, Y. Sugaya, Y. Urawa, K. Ito, H. Naka, T. Omae, A. Kayano, K. Nishiura, Eisai R & D Management Co. Ltd. US Patent Application 2007/0142640 A1, 2007.
C.J. McElhinny, F.I. Carroll, A.H. Lewin, Synthesis 44 (2012) 57–62.
doi: 10.1055/s-0031-1289587
Y. Nakao, T. Oda, A.K. Sahoo, T. Hiyama, J. Organomet. Chem. 687 (2003) 570–573.
doi: 10.1016/j.jorganchem.2003.08.041
L.T. Ball, G.C. Lloyd-Jones, C.A. Russell, J. Am. Chem. Soc. 136 (2014) 254–264.
doi: 10.1021/ja408712e
J.Y. Lee, G.C. Fu, J. Am. Chem. Soc. 125 (2003) 5616–5617.
doi: 10.1021/ja0349352
K. Durka, J. Górka, P. Kurach, et al., J. Organomet. Chem. 695 (2010) 2635–2643.
doi: 10.1016/j.jorganchem.2010.08.016
S.R. Wilson, L.A. Jacob, J. Org. Chem. 51 (1986) 4833–4836.
doi: 10.1021/jo00375a015
W. Qu, B. Hu, J.W. Babich, et al., Nat. Commun. 11 (2020) 1736.
doi: 10.1038/s41467-020-15556-7
M. Yonemoto-Kobayashi, K. Inamoto, Y. Kondo, Chem. Lett. 43 (2014) 477–479.
doi: 10.1246/cl.131108
T. Hattori, Y. Suzuki, S. Miyano, Chem. Lett. 32 (2003) 454–455.
doi: 10.1246/cl.2003.454
M.P. Sibi, N.E. Carpenter, e-EROS Encyclopedia of Reagents for Organic Synthesis 2001, 1–4;
H. Maekawa, T. Nakamura, A. Yamaguchi, Electrochemistry 81 (2013) 394398.
Z. Wang, S. Chang, Org. Lett. 15 (2013) 1990–1993.
doi: 10.1021/ol400659p
F. Yan, J.F. Bai, Y. Dong, et al., JACS Au 2 (2022) 2522–2528.
doi: 10.1021/jacsau.2c00392
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Fan Chen , Xiaoyu Zhao , Weihang Miao , Yingying Li , Ye Yuan , Lingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245