Citation: Weibin Shen, Jie Liu, Gongyu Wen, Shuai Li, Binhui Yu, Shuangyu Song, Bojie Gong, Rongyang Zhang, Shibao Liu, Hongpeng Wang, Yao Wang, Yujing Liu, Huadong Yuan, Jianming Luo, Shihui Zou, Xinyong Tao, Jianwei Nai. Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction[J]. Chinese Chemical Letters, ;2025, 36(7): 110184. doi: 10.1016/j.cclet.2024.110184 shu

Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction

Figures(4)

  • Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction (OER). However, constructing a novel catalysis system with high catalytic activity and precise structures is still a huge challenge due to the tedious procedure of precursor synthesis and anion selection. Here, a bimetallic (FeNi) nanowire self-assembled superstructure was synthesized using the Hoffmann rearrangement method, and then functionalized with four anions (P, Se, S, and O). Notably, the Fe3Se4/Ni3Se4 catalyst shows a high conductivity, enhances the adsorption of intermediate products, accelerates the rate-determining step, and consequently results to improved electrocatalytic performance. Using the Fe3Se4/Ni3Se4 catalyst exhibits enhanced performance with overpotential of 316 mV at 10 mA/cm2, in stark contrast to Fe2P/Ni2P (357 mV), Fe7S8/NiS (379 mV), and Fe3O4/NiO (464 mV). Moreover, the formation mechanism of superstructure and the relationship between electronegativities and electrocatalytic properties, are elucidated. Accordingly, this work provides an efficient approach to Hoffmann-type coordination polymer catalyst for oxygen evolution towards a near future.
  • 加载中
    1. [1]

      E. Kabir, P. Kumar, S. Kumar, et al., Renew. Sust. Energ. Rev. 82 (2018) 894–900.

    2. [2]

      P. Sadorsky, J. Clean Prod. 289 (2021) 125779.

    3. [3]

      B.Q. Lin, Z. Li, Appl. Energy 307 (2022) 118160.

    4. [4]

      J. Di, W. Jiang, Mater. Today. Catal. 1 (2023) 100001.

    5. [5]

      H. Ishaq, I. Dincer, C. Crawford, Int. J. Hydrog. Energy 47 (2022) 26238–26264.

    6. [6]

      M.D. Ji, J.L. Wang, Int. J. Hydrog. Energy 46 (2021) 38612–38635.

    7. [7]

      L.M. Cao, D. Lu, D.C. Zhong, et al., Coord. Chem. Rev. 407 (2020) 213156.

    8. [8]

      M. Chatenet, B.G. Pollet, D.R. Dekel, et al., Chem. Soc. Rev. 51 (2022) 4583–4762.  doi: 10.1039/d0cs01079k

    9. [9]

      W. Yang, S.W. Chen, Chem. Eng. J. 393 (2020) 124726.

    10. [10]

      E. Fabbri, A. Habereder, K. Waltar, et al., Catal. Sci. Technol. 4 (2014) 3800–3821.

    11. [11]

      X.H. Xie, L. Du, L.T. Yon, et al., Adv. Energy Mater. 32 (2022) 2110036.

    12. [12]

      Q. Wang, Y. Gong, X. Zi, et al., Angew. Chem. Int. Ed. 63 (2024) e202405438.  doi: 10.1002/anie.202405438

    13. [13]

      K. Xiao, Y. Wang, P. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202301408.

    14. [14]

      J.H. Huang, Y.H. Xie, L. Yan, et al., Energy Environ. Sci. 14 (2021) 883–889.  doi: 10.1039/d0ee03639k

    15. [15]

      L.J. Zhang, H. Jang, H.H. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 18821–18829.  doi: 10.1002/anie.202106631

    16. [16]

      J.Y. Chen, P.X. Cui, G.Q. Zhao, et al., Angew. Chem. Int. Ed. 58 (2019) 12540–12544.  doi: 10.1002/anie.201907017

    17. [17]

      Y. Fu, H.Y. Yu, C. Jiang, et al., Adv. Funct. Mater. 28 (2018) 1705094.

    18. [18]

      H. Zhang, T. Gao, Q. Zhang, et al., Mater. Today. Catal. 3 (2023) 100013.

    19. [19]

      S. Guo, C. Chen, M. Qiu, et al., Mater. Today. Catal. 3 (2023) 100022.

    20. [20]

      Z.P. Wu, X.F. Lu, S.Q. Zang, et al., Adv. Energy Mater. 30 (2020) 1910274.

    21. [21]

      H. Xu, H.Y. Shang, C. Wang, et al., Coord. Chem. Rev. 418 (2020) 213374.

    22. [22]

      X. Long, J.K. Li, S. Xiao, et al., Angew. Chem. Int. Ed. 53 (2014) 7584–7588.  doi: 10.1002/anie.201402822

    23. [23]

      Q. Zhang, W. Xiao, H.C. Fu, et al., ACS Catal. 13 (2023) 14975–14986.  doi: 10.1021/acscatal.3c03804

    24. [24]

      J. Mohammed-Ibrahim, J. Power Sources 448 (2020) 227375.

    25. [25]

      W. Cao, X.H. Gao, J. Wu, et al., ACS Catal. 14 (2024) 3640–3646.  doi: 10.1021/acscatal.3c06180

    26. [26]

      M. Wang, Y.S. Chen, Z.B. Yu, et al., J. Colloid Interface Sci. 640 (2023) 1–14.

    27. [27]

      S. Kang, C. Im, I. Spanos, et al., Angew. Chem. Int. Ed. 61 (2022) e202214541.

    28. [28]

      H. Liao, X. Zhang, S. Niu, et al., Appl. Catal. B: Environ. 307 (2022) 121150.

    29. [29]

      H. Liao, T. Luo, P. Tan, et al., Adv. Energy Mater. 31 (2021) 2102772.

    30. [30]

      X.J. Li, H.K. Zhang, Q. Hu, et al., Angew. Chem. Int. Ed. 62 (2023) e202300478.

    31. [31]

      Y. Hao, X. Cao, C. Lei, et al., Mater. Today. Catal. 2 (2023) 100012.

    32. [32]

      H. Liao, G. Ni, P. Tan, et al., Adv. Mater. 35 (2023) 2300347.

    33. [33]

      L. Magnier, G. Cossard, V. Martin, et al., Nat. Mater. 23 (2024) 252–261.  doi: 10.1038/s41563-023-01744-5

    34. [34]

      J. Zhuang, D. Wang, Mater. Today. Catal. 2 (2023) 100009.

    35. [35]

      Z.K. Wang, Y.Y. Wang, N. Zhang, et al., J. Mater. Chem. A 10 (2022) 10342–10349.  doi: 10.1039/d2ta01931k

    36. [36]

      H. Yang, L.Q. Gong, H.M. Wang, et al., Nat. Commun. 11 (2020) 5075.

    37. [37]

      Y. Chen, B. Zhang, Y. Liu, et al., Mater. Today. Catal. 1 (2023) 100003.

    38. [38]

      S. Xie, H. Jin, C. Wang, et al., Chin. Chem. Lett. 34 (2023) 107681.

    39. [39]

      Q.C. Xu, H. Jiang, X.Z. Duan, et al., Nano Lett. 21 (2021) 492–499.  doi: 10.1021/acs.nanolett.0c03950

    40. [40]

      J.Y. Zou, X.F. Ren, New J. Chem. 47 (2023) 14408–14417.  doi: 10.1039/d3nj02351f

    41. [41]

      Y.K. Bai, Y. Wu, X.C. Zhou, et al., Nat. Commun. 13 (2022) 6094.

    42. [42]

      Y.C. Wu, Y.J. Wang, Z.W. Wang, et al., J. Mater. Chem. A 9 (2021) 23574–23581.  doi: 10.1039/d1ta06574b

    43. [43]

      Q. Jiang, S.H. Wang, C.R. Zhang, et al., Nat. Commun. 14 (2023) 6826.

    44. [44]

      J.W. Nai, X.Z. Xu, Q.F. Xie, et al., Adv. Mater. 34 (2022) 2104405.

    45. [45]

      P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5 (2015) 1500985.

    46. [46]

      P.R. Chen, J.S. Ye, H. Wang, et al., J. Alloy. Compd. 883 (2021) 160833.

    47. [47]

      K. Chu, Y.P. Liu, Y.B. Li, et al., J. Mater. Chem. A 7 (2019) 4389–4394.  doi: 10.1039/c9ta00016j

    48. [48]

      X.X. Yu, Z.Y. Yu, X.L. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 7537–7543.  doi: 10.1021/jacs.9b02527

    49. [49]

      R. Boppella, J. Tan, W. Yang, et al., Adv. Energy Mater. 29 (2019) 1807976.

    50. [50]

      G.Y. Wen, X.P. Zhang, Y.L. Sui, et al., Chem. Eng. J. 430 (2022) 133041.

    51. [51]

      G.Y. Wen, Y.L. Sui, X.P. Zhang, et al., J. Colloid Interface Sci. 589 (2021) 208–216.

    52. [52]

      P. Guo, L. Shi, D. Liu, et al., Mater. Today. Catal. 1 (2023) 100002.

    53. [53]

      G. Zhong, S. Xu, B. Fang, Mater. Today. Catal. 4 (2024) 100045.

    54. [54]

      J. Chen, Q. Long, K. Xiao, et al., Sci. Bull. 66 (2021) 1063–1072.  doi: 10.1109/tcpmt.2021.3084966

    55. [55]

      J. Wei, K. Xiao, Y. Chen, et al., Energy Environ. Sci. 15 (2022) 4592–4600.  doi: 10.1039/d2ee02151j

    56. [56]

      H. Song, M. Wu, Z. Tang, et al., Angew. Chem. Int. Ed. 133 (2021) 7310–7320.  doi: 10.1002/ange.202017102

    57. [57]

      M.B.Z. Hegazy, F. Hassan, M. Hu, Small 20 (2023) 2306709.

    58. [58]

      T. Wang, Y. Wu, Y. Han, et al., ACS Appl. Nano Mater. 4 (2021) 14161–14168.  doi: 10.1021/acsanm.1c03619

    59. [59]

      R. Zhang, Z. Wu, Z. Huang, et al., Chin. Chem. Lett. 34 (2023) 107600.

    60. [60]

      J.Y. Li, Z.P. Ni, Z. Yan, et al., CrystEngComm 16 (2014) 6444–6449.

    61. [61]

      V. García-López, F. Marques-Moros, J. Troya, et al., J. Mater. Chem. C 12 (2023) 161–169.

    62. [62]

      M.B. Zakaria, E.Z.M. Ebeid, M.M. Abdel-Galeil, et al., New J. Chem. 41 (2017) 14890–14897.

    63. [63]

      H.F. Liu, S.Z. Cong, X.R. Yan, et al., J. Membr. Sci. 669 (2023) 121282.

    64. [64]

      V. Rubio-Giménez, G. Escorcia-Ariza, C. Bartual-Murgui, et al., Chem. Mat. 31 (2019) 7277–7287.  doi: 10.1021/acs.chemmater.9b01634

    65. [65]

      W. Wang, L. Li, J. Ouyang, et al., Chin. Chem. Lett. 34 (2023) 107597.

    66. [66]

      J. Chen, G. Qian, B. Chu, et al., Small 18 (2022) 2106773.

    67. [67]

      H. Li, C. Zhang, W. Xiang, et al., Chem. Eng. J 452 (2023) 139104.

    68. [68]

      B. Zhang, L. Wang, Z. Cao, et al., Nat. Catal. 3 (2020) 985–992.  doi: 10.1038/s41929-020-00525-6

    69. [69]

      J. Zhou, Y. Dou, T. He, et al., Nano Res. 14 (2021) 4548–4555.  doi: 10.1007/s12274-021-3370-7

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    5. [5]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    6. [6]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    7. [7]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    8. [8]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    11. [11]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    12. [12]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    13. [13]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    14. [14]

      Gen ZhangYing GuLin LiFuli MaDan YueXiaoguang ZhouChungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    18. [18]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    19. [19]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    20. [20]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return