Citation: Xinyu Wu, Jianfeng Lu, Zihao Zhu, Suijun Liu, Herui Wen. Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide[J]. Chinese Chemical Letters, ;2025, 36(7): 110151. doi: 10.1016/j.cclet.2024.110151 shu

Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide

    * Corresponding authors.
    E-mail addresses: zhuzihao@jxust.edu.cn (Z. Zhu), sjliu@jxust.edu.cn (S. Liu).
  • Received Date: 28 April 2024
    Revised Date: 28 May 2024
    Accepted Date: 20 June 2024
    Available Online: 21 June 2024

Figures(23)

  • In recent years, reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development. Converting CO2 into valuable chemical products through electrocatalysis powered by renewable electricity exhibits great potential. However, the electro-reduction of CO2 heavily relies on efficient catalysts to overcome the required energy barrier due to the high stability of CO2. p-block metal-based MOFs and MOF-derived catalysts have been proven to be efficient catalysts for electrochemical CO2 reduction reaction (CO2RR) due to their unique electronic structure and clear active sites. However, factors such as conductivity and stability limit the practical application of p-block metal-based MOFs and MOF-derived catalysts. In this review, we summarize the latest progress of MOFs and MOF-derived catalysts based on typical p-block metals in the field of CO2RR. Then the modification strategies for MOFs-based catalysts and the related catalytic mechanism are briefly introduced. Furthermore, we offer the challenges and prospects of p-block metal-based MOFs and MOF-derived catalysts in the hope of providing guidance for potential applications.
  • 加载中
    1. [1]

      T. Zheng, K. Jiang, H. Wang, Adv. Mater. 30 (2018) 1802066.

    2. [2]

      H. Zhao, D. Benetti, X. Tong, et al., Nano Energy 50 (2018) 756–765.

    3. [3]

      H. Zhao, G. Liu, S. You, et al., Energy Environ. Sci. 14 (2021) 396–406.  doi: 10.1039/d0ee02235g

    4. [4]

      S. Chu, A. Majumdar, Nature 488 (2012) 294–303.  doi: 10.1038/nature11475

    5. [5]

      Q. Hu, W. Zhou, S. Qi, et al., Nat. Sustain. 7 (2024) 442–451.  doi: 10.1038/s41893-024-01302-0

    6. [6]

      X.L. Jiang, F.Y. Ren, Y. Shi, et al., CCS Chem. 6 (2024) 2333–2345.  doi: 10.31635/ccschem.024.202303476

    7. [7]

      L. Li, Y. Huang, Y. Li, Energy Chem. 2 (2020) 100024.

    8. [8]

      D. Li, M. Kassymova, X. Cai, et al., Coord. Chem. Rev. 412 (2020) 213262.

    9. [9]

      M. Reichstein, M. Bahn, P. Ciais, et al., Nature 500 (2013) 287–295.  doi: 10.1038/nature12350

    10. [10]

      D. Notz, J. Stroeve, Science 354 (2016) 747–750.  doi: 10.1126/science.aag2345

    11. [11]

      C. Hepburn, E. Adlen, J. Beddington, et al., Nature 575 (2019) 87–97.  doi: 10.1038/s41586-019-1681-6

    12. [12]

      C. Vogt, M. Monai, G.J. Kramer, et al., Nat. Catal. 2 (2019) 188–197.  doi: 10.1038/s41929-019-0244-4

    13. [13]

      H. Xu, D. Rebollar, H. He, et al., Nat. Energy 5 (2020) 623–632.

    14. [14]

      R.L. Siegelman, E.J. Kim, J.R. Long, Nat. Mater. 20 (2021) 1060–1072.  doi: 10.1038/s41563-021-01054-8

    15. [15]

      P.V. Kortunov, M. Siskin, L.S. Baugh, et al., Energy Fuels 29 (2015) 5940–5966.  doi: 10.1021/acs.energyfuels.5b00985

    16. [16]

      J. Palomar, M. Larriba, J. Lemus, et al., Sep. Purif. Technol. 213 (2019) 578–586.

    17. [17]

      X. Duan, J. Xu, Z. Wei, et al., Adv. Mater. 29 (2017) 1701784.

    18. [18]

      K.T. Ngo, M. McKinnon, B. Mahanti, et al., J. Am. Chem. Soc. 139 (2017) 2604–2618.  doi: 10.1021/jacs.6b08776

    19. [19]

      D. Xiang, D. Magana, R.B. Dyer, J. Am. Chem. Soc. 136 (2014) 14007–14010.  doi: 10.1021/ja5081103

    20. [20]

      A. Otto, T. Grube, S. Schiebahn, et al., Energy Environ. Sci. 8 (2015) 3283–3297.

    21. [21]

      H. Rao, J. Bonin, M. Robert, J. Phys. Chem. C 122 (2018) 13834–13839.  doi: 10.1021/acs.jpcc.8b00950

    22. [22]

      S. Dou, L. Tao, R. Wang, et al., Adv. Mater. 30 (2018) 1705850.

    23. [23]

      Y. Lum, J.W. Ager, Nat. Catal. 2 (2019) 86–93.

    24. [24]

      Z. Miao, P. Hu, C. Nie, et al., J. Energy Chem. 38 (2019) 114–118.

    25. [25]

      A.M. Appel, J.E. Bercaw, A.B. Bocarsly, et al., Chem. Rev. 113 (2013) 6621–6658.  doi: 10.1021/cr300463y

    26. [26]

      Y.Y. Zhang, G.W. Yang, R. Xie, et al., Angew. Chem. Int. Ed. 59 (2020) 23291–23298.  doi: 10.1002/anie.202010651

    27. [27]

      Y. Zhang, H. Liu, F. Gao, et al., Energy Chem. 4 (2022) 100078.

    28. [28]

      Q. Gong, P. Ding, M. Xu, et al., Nat. Commun. 10 (2019) 2807.

    29. [29]

      D.U. Nielsen, X.M. Hu, K. Daasbjerg, et al., Nat. Catal. 1 (2018) 244–254.  doi: 10.1038/s41929-018-0051-3

    30. [30]

      W. Li, H. Wang, X. Jiang, et al., RSC Adv. 8 (2018) 7651–7669.  doi: 10.1039/c7ra13546g

    31. [31]

      J. Xiong, J. Di, J. Xia, et al., Adv. Funct. Mater. 28 (2018) 1801983.

    32. [32]

      Q. Han, X. Bai, Z. Man, et al., J. Am. Chem. Soc. 141 (2019) 4209–4213.  doi: 10.1021/jacs.8b13673

    33. [33]

      S. Xu, E.A. Carter, Chem. Rev. 119 (2019) 6631–6669.  doi: 10.1021/acs.chemrev.8b00481

    34. [34]

      L. Zhang, Z.J. Zhao, J. Gong, Angew. Chem. Int. Ed. 56 (2017) 11326–11353.  doi: 10.1002/anie.201612214

    35. [35]

      S.L. Xie, J. Liu, L.Z. Dong, et al., Chem. Sci. 10 (2019) 185–190.  doi: 10.1039/c8sc03471k

    36. [36]

      K.L. Bae, J. Kim, C.K. Lim, et al., Nat. Commun. 8 (2017) 1156.

    37. [37]

      X. Li, C. Deng, Y. Kong, et al., Angew. Chem. Int. Ed. 62 (2023) e202309732.

    38. [38]

      C.J. Yang, L. Liu, Q.S. Gu, et al., CCS Chem. 6 (2024) 1612–1627.  doi: 10.31635/ccschem.024.202403839

    39. [39]

      Q. Hu, S. Qi, Q. Huo, et al., J. Am. Chem. Soc. 146 (2024) 2967–2976.  doi: 10.1021/jacs.3c06904

    40. [40]

      Z. Yang, F.E. Oropeza, K.H.L. Zhang, APL Mater 8 (2020) 060901.

    41. [41]

      A.S. Varela, W. Ju, P. Strasser, Adv. Energy Mater. 8 (2018) 1703614.

    42. [42]

      C. Chen, J.F. Khosrowabadi Kotyk, S.W. Sheehan, Chem. 4 (2018) 2571–2586.

    43. [43]

      C. Wei, S. Sun, D. Mandler, et al., Chem. Soc. Rev. 48 (2019) 2518–2534.  doi: 10.1039/c8cs00848e

    44. [44]

      P. Shao, L. Yi, S. Chen, et al., J. Energy Chem. 40 (2020) 156–170.

    45. [45]

      D. Li, L. Huang, Y. Tian, et al., Appl. Catal. B 292 (2021) 120119.

    46. [46]

      S. Liu, J. Xiao, X.F. Lu, et al., Angew. Chem. Int. Ed. 58 (2019) 8499–8503.  doi: 10.1002/anie.201903613

    47. [47]

      L. Ji, L. Chang, Y. Zhang, et al., ACS Catal. 9 (2019) 9721–9725.  doi: 10.1021/acscatal.9b03180

    48. [48]

      E. Zhang, T. Wang, K. Yu, et al., J. Am. Chem. Soc. 141 (2019) 16569–16573.  doi: 10.1021/jacs.9b08259

    49. [49]

      S. Roy, B. Sharma, J. Pécaut, et al., J. Am. Chem. Soc. 139 (2017) 3685–3696.  doi: 10.1021/jacs.6b11474

    50. [50]

      X. Yang, Q.X. Li, S.Y. Chi, et al., SmartMat 3 (2022) 163–172.

    51. [51]

      M.R. Liu, Q.L. Hong, Q.H. Li, et al., Adv. Funct. Mater. 28 (2018) 1801136.

    52. [52]

      Y.X. Tan, F. Wang, J. Zhang, Chem. Soc. Rev. 47 (2018) 2130–2144.  doi: 10.1039/c7cs00782e

    53. [53]

      H. Furukawa, K.E. Cordova, M. O'Keeffe, et al., Science 341 (2013) 1230444.

    54. [54]

      C.S. Diercks, Y. Liu, K.E. Cordova, et al., Nat. Mater. 17 (2018) 301–307.  doi: 10.1038/s41563-018-0033-5

    55. [55]

      T. Qiu, S. Gao, Z. Liang, et al., Angew. Chem. Int. Ed. 60 (2021) 17314–17336.  doi: 10.1002/anie.202012699

    56. [56]

      Z. Meng, Z. Qiu, Y. Shi, et al., eScience 3 (2023) 100092.

    57. [57]

      Z. Jiao, X. Zhao, J. Zhao, et al., Acta Phys. Chim. Sin. 39 (2023) 2301018.  doi: 10.3866/pku.whxb202301018

    58. [58]

      G.L. Yang, Y. Xie, Z.H. Jiao, et al., J. Mater. Chem. A 11 (2023) 16255–16262.  doi: 10.1039/d3ta02520a

    59. [59]

      Y. Lv, S.W. Ke, Y. Gu, et al., Angew. Chem. Int. Ed. 62 (2023) e202305246.

    60. [60]

      Z. Lei, Y. Xue, W. Chen, et al., Adv. Energy Mater. 8 (2018) 1801587.

    61. [61]

      Z.G. Gu, J. Zhang, Coord. Chem. Rev. 378 (2019) 513–532.

    62. [62]

      R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Electrochem. Commun. 25 (2012) 70–73.

    63. [63]

      R. Hinogami, S. Yotsuhashi, M. Deguchi, et al., ECS Electrochem. 1 (2012) H17–H19.  doi: 10.1149/2.001204eel

    64. [64]

      T. Ma, Q. Fan, H. Tao, et al., Nanotechnology 28 (2017) 472001.  doi: 10.1088/1361-6528/aa8f6f

    65. [65]

      S. Zhang, P. Kang, S. Ubnoske, et al., J. Am. Chem. Soc. 136 (2014) 7845–7848.  doi: 10.1021/ja5031529

    66. [66]

      Z. Chen, K. Mou, S. Yao, et al., J. Mater. Chem. A 6 (2018) 11236–11243.  doi: 10.1039/c8ta03328e

    67. [67]

      Z.H. Zhao, J.R. Huang, D.S. Huang, et al., J. Am. Chem. Soc. 146 (2024) 14349–14356.  doi: 10.1021/jacs.4c04841

    68. [68]

      P. Li, F. Yang, J. Li, et al., Adv. Energy Mater. 13 (2023) 2301597.

    69. [69]

      N.V. Rees, R.G. Compton, J. Solid State Electrochem. 15 (2011) 2095–2100.  doi: 10.1007/s10008-011-1398-4

    70. [70]

      A. Liu, M. Gao, X. Ren, et al., J. Mater. Chem. A 8 (2020) 3541–3562.  doi: 10.1039/c9ta11966c

    71. [71]

      R. Francke, B. Schille, M. Roemelt, Chem. Rev. 118 (2018) 4631–4701.  doi: 10.1021/acs.chemrev.7b00459

    72. [72]

      D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. 28 (2016) 3423–3452.  doi: 10.1002/adma.201504766

    73. [73]

      A. Vasileff, Y. Zheng, S.Z. Qiao, Adv. Energy Mater. 7 (2017) 1700759.

    74. [74]

      J. Zhang, W. Cai, F.X. Hu, et al., Chem. Sci. 12 (2021) 6800–6819.  doi: 10.1039/d1sc01375k

    75. [75]

      T. Cheng, H. Xiao, W.A. Goddard, J. Ⅲ, Am. Chem. Soc. 138 (2016) 13802–13805.  doi: 10.1021/jacs.6b08534

    76. [76]

      S. Jin, Z. Hao, K. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 20627–20648.  doi: 10.1002/anie.202101818

    77. [77]

      S. Guo, T. Asset, P. Atanassov, ACS Catal. 11 (2021) 5172–5188.  doi: 10.1021/acscatal.0c04862

    78. [78]

      T. Tang, Z. Wang, J. Guan, Adv. Funct. Mater. 32 (2022) 2111504.

    79. [79]

      J. Yu, J. Wang, Y. Ma, et al., Adv. Funct. Mater. 31 (2021) 2102151.

    80. [80]

      H.H. Cramer, B. Chatterjee, T. Weyhermüller, et al., Angew. Chem. Int. Ed. 132 (2020) 15804–15811.  doi: 10.1002/ange.202004463

    81. [81]

      Y. Fang, J.C. Flake, J. Am. Chem. Soc. 139 (2017) 3399–3405.  doi: 10.1021/jacs.6b11023

    82. [82]

      Z. Gao, Y. Gong, Y. Zhu, et al., Nano Res. 16 (2023) 8743–8750.  doi: 10.1007/s12274-023-5685-z

    83. [83]

      Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett. 14 (1985) 1695–1698.  doi: 10.1246/cl.1985.1695

    84. [84]

      Y. Hori, A. Murata, Electrochim. Acta 35 (1990) 1777–1780.

    85. [85]

      Y. Hori, H. Wakebe, T. Tsukamoto, et al., Electrochim. Acta 39 (1994) 1833–1839.

    86. [86]

      M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 57 (2018) 2165–2177.  doi: 10.1021/acs.iecr.7b03514

    87. [87]

      L. Yuan, S. Zeng, X. Zhang, et al., Mater. Rep. Energy 3 (2023) 100177.

    88. [88]

      Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.

    89. [89]

      A.J. Welch, J.S. DuChene, G. Tagliabue, et al., ACS Appl. Energy Mater. 2 (2019) 164–170.  doi: 10.1021/acsaem.8b01570

    90. [90]

      E.E. Benson, C.P. Kubiak, A.J. Sathrum, et al., Chem. Soc. Rev. 38 (2009) 89–99.

    91. [91]

      P. Kang, Z. Chen, M. Brookhart, et al., Top. Catal. 58 (2015) 30–45.  doi: 10.1007/s11244-014-0344-y

    92. [92]

      R.Z. Zhang, B.Y. Wu, Q. Li, et al., Coord. Chem. Rev. 422 (2020) 213436.

    93. [93]

      N. Han, P. Ding, L. He, et al., Adv. Energy Mater. 10 (2020) 1902338.

    94. [94]

      S. Verma, B. Kim, H.R.M. Jhong, et al., ChemSusChem 9 (2016) 1972–1979.  doi: 10.1002/cssc.201600394

    95. [95]

      W. Lai, Y. Qiao, J. Zhang, et al., Energy Environ. Sci. 15 (2022) 3603–3629.  doi: 10.1039/d2ee00472k

    96. [96]

      J. Zhao, S. Xue, J. Barber, et al., J. Mater. Chem. A 8 (2020) 4700–4734.  doi: 10.1039/c9ta11778d

    97. [97]

      X. Tan, C. Yu, Y. Ren, et al., Energy Environ. Sci. 14 (2021) 765–780.  doi: 10.1039/d0ee02981e

    98. [98]

      R. Peters, M. Baltruweit, T. Grube, et al., J. CO2 Util. 34 (2019) 616–634.

    99. [99]

      Y. Wang, T. He, J. Mater. Chem. A 9 (2021) 87–110.

    100. [100]

      L. Gao, X. Cui, C.D. Sewell, et al., Chem. Soc. Rev. 50 (2021) 8428–8469.  doi: 10.1039/d0cs00962h

    101. [101]

      Z. Wang, P. Hou, Y. Wang, et al., ACS Sustain. Chem. Eng. 7 (2019) 6106–6112.  doi: 10.1021/acssuschemeng.8b06278

    102. [102]

      Y. Liu, C.C.L. McCrory, Nat. Commun. 10 (2019) 1683.

    103. [103]

      J.A. Rabinowitz, M.W. Kanan, Nat. Commun. 11 (2020) 5231.

    104. [104]

      J.E. Huang, F. Li, A. Ozden, et al., Science 372 (2021) 1074–1078.  doi: 10.1126/science.abg6582

    105. [105]

      S. Chatterjee, I. Dutta, Y. Lum, et al., Energy Environ. Sci. 14 (2021) 1194–1246.  doi: 10.1039/d0ee03011b

    106. [106]

      Y. Pei, H. Zhong, F. Jin, Energy Sci. Eng. 9 (2021) 1012–1032.  doi: 10.1002/ese3.935

    107. [107]

      A. Bagger, W. Ju, A.S. Varela, et al., ChemPhysChem 18 (2017) 3266–3273.  doi: 10.1002/cphc.201700736

    108. [108]

      Y.X. Du, Y.T. Zhou, M.Z. Zhu, Tungsten 5 (2023) 201–216.  doi: 10.1007/s42864-022-00197-8

    109. [109]

      H. Shang, T. Wang, J. Pei, et al., Angew. Chem. Int. Ed. 132 (2020) 22651–22655.  doi: 10.1002/ange.202010903

    110. [110]

      W. Luo, W. Xie, M. Li, et al., J. Mater. Chem. A 7 (2019) 4505–4515.  doi: 10.1039/c8ta11645h

    111. [111]

      B. Jia, Z. Chen, C. Li, et al., J. Am. Chem. Soc. 145 (2023) 14101–14111.  doi: 10.1021/jacs.3c04288

    112. [112]

      J. Zhang, R. Yin, Q. Shao, et al., Angew. Chem. Int. Ed. 58 (2019) 5609–5613.  doi: 10.1002/anie.201900167

    113. [113]

      W. Ma, S. Xie, X.G. Zhang, et al., Nat. Commun. 10 (2019) 892.

    114. [114]

      Y.Y. Birdja, R.E. Vos, T.A. Wezendonk, et al., ACS Catal. 8 (2018) 4420–4428.  doi: 10.1021/acscatal.7b03386

    115. [115]

      Z.H. Zhu, Z.L. Liang, Z.H. Jiao, et al., Angew. Chem. Int. Ed. 61 (2022) e202214243.

    116. [116]

      S.Z. Hou, X.D. Zhang, W.W. Yuan, et al., Inorg. Chem. 59 (2020) 11298–11304.  doi: 10.1021/acs.inorgchem.0c00769

    117. [117]

      X. Kang, L. Li, A. Sheveleva, et al., Nat. Commun. 11 (2020) 5464.

    118. [118]

      L.L. Zhuo, P. Chen, K. Zheng, et al., Angew. Chem. Int. Ed. 61 (2022) e202204967.

    119. [119]

      S. Wang, Y. Wang, J.M. Huo, et al., Inorg. Chem. Front. 10 (2023) 158–167.

    120. [120]

      X. Kang, B. Wang, K. Hu, et al., J. Am. Chem. Soc. 142 (2020) 17384–17392.  doi: 10.1021/jacs.0c05913

    121. [121]

      Z. Wang, Y. Zhou, C. Xia, et al., Angew. Chem. Int. Ed. 60 (2021) 19107–19112.  doi: 10.1002/anie.202107523

    122. [122]

      R. Liang, R. Huang, X. Wang, et al., Appl. Surf. Sci. 464 (2019) 396–403.

    123. [123]

      R. He, A. Zhang, Y. Ding, et al., Adv. Mater. 30 (2018) 1705872.

    124. [124]

      X. Sun, L. Lu, Q. Zhu, et al., Angew. Chem. Int. Ed. 57 (2018) 2427–2431.  doi: 10.1002/anie.201712221

    125. [125]

      Y. Zhou, S. Liu, Y. Gu, et al., J. Am. Chem. Soc. 143 (2021) 14071–14076.  doi: 10.1021/jacs.1c06797

    126. [126]

      Z.H. Zhu, B.H. Zhao, S.L. Hou, et al., Angew. Chem. Int. Ed. 60 (2021) 23394–23402.  doi: 10.1002/anie.202110387

    127. [127]

      Y. Zhang, F. Li, X. Zhang, et al., J. Mater. Chem. A 6 (2018) 4714–4720.  doi: 10.1039/c8ta00023a

    128. [128]

      J. Li, C. Wang, D. Wang, et al., J. Mater. Chem. A 10 (2022) 20018–20023.  doi: 10.1039/d2ta01727j

    129. [129]

      Y. Xing, X. Kong, X. Guo, et al., Adv. Sci. 7 (2020) 1902989.

    130. [130]

      T. Tran-Phu, R. Daiyan, Z. Fusco, et al., Adv. Funct. Mater. 30 (2020) 1906478.

    131. [131]

      J. Yang, X. Wang, Y. Qu, et al., Adv. Energy Mater. 10 (2020) 2001709.

    132. [132]

      F. Li, G.H. Gu, C. Choi, et al., Appl. Catal. B 277 (2020) 119241.

    133. [133]

      Z. Jiang, M. Zhang, X. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202311223.

    134. [134]

      Z. Gao, M. Hou, Y. Shi, et al., Chem. Sci. 14 (2023) 6860–6866.  doi: 10.1039/d3sc01876h

    135. [135]

      Z.H. Zhu, Z.L. Liang, S.L. Hou, et al., J. Energy Chem. 63 (2021) 328–335.

    136. [136]

      Z.W. Yang, J.M. Chen, Z.L. Liang, et al., ChemCatChem 15 (2023) e202201321.

    137. [137]

      N. Li, P. Yan, Y. Tang, et al., Appl. Catal. B 297 (2021) 120481.

    138. [138]

      D. Yao, C. Tang, A. Vasileff, et al., Angew. Chem. Int. Ed. 60 (2021) 18178–18184.  doi: 10.1002/anie.202104747

    139. [139]

      P. Lamagni, M. Miola, J. Catalano, et al., Adv. Funct. Mater. 30 (2020) 1910408.

    140. [140]

      W.W. Yuan, J.X. Wu, X.D. Zhang, et al., J. Mater. Chem. A 8 (2020) 24486–24492.  doi: 10.1039/d0ta08092f

    141. [141]

      C. Cao, D.D. Ma, J. Jia, et al., Adv. Mater. 33 (2021) 2008631.

    142. [142]

      L. Liu, K. Yao, J. Fu, et al., Colloids Surf. A 633 (2022) 127840.

    143. [143]

      L. Li, X. Kang, M. He, et al., J. Mater. Chem. A 10 (2022) 17801–17807.  doi: 10.1039/d2ta04485d

    144. [144]

      G. Wen, D.U. Lee, B. Ren, et al., Adv. Energy Mater. 8 (2018) 1802427.

    145. [145]

      J. Wang, S. Ning, M. Luo, et al., Appl. Catal. B 288 (2021) 119979.

    146. [146]

      H. Xue, Z.H. Zhao, P.Q. Liao, et al., J. Am. Chem. Soc. 145 (2023) 16978–16982.  doi: 10.1021/jacs.3c05023

    147. [147]

      Q. Wang, Y. Wu, C. Zhu, et al., Electrochim. Acta 369 (2021) 137662.

    148. [148]

      B. Kumar, V. Atla, J.P. Brian, et al., Angew. Chem. Int. Ed. 56 (2017) 3645–3649.  doi: 10.1002/anie.201612194

    149. [149]

      Y. Fu, T. Wang, W. Zheng, et al., ACS Appl. Mater. Interfaces 12 (2020) 16178–16185.  doi: 10.1021/acsami.9b18091

    150. [150]

      X. Wang, Y. Zou, Y. Zhang, et al., J. Colloid Interface Sci. 626 (2022) 836–847.  doi: 10.3390/brainsci12070836

    151. [151]

      Y. Deng, S. Wang, Y. Huang, et al., Chin. J. Chem. Eng. 43 (2022) 353–359.

    152. [152]

      W. Geng, Q. Wang, C. Zhu, et al., J. Power Sources 529 (2022) 231252.

    153. [153]

      Z.H. Zhao, J.R. Huang, P.Q. Liao, et al., Angew. Chem. Int. Ed. 62 (2023) e202301767.

    154. [154]

      J. Yan, X. Wang, F. Ning, et al., Dalton Trans. 52 (2023) 11904–11912.  doi: 10.1039/d3dt01610b

    155. [155]

      Z.H. Zhao, J.R. Huang, P.Q. Liao, et al., J. Am. Chem. Soc. 145 (2023) 26783–26790.  doi: 10.1021/jacs.3c08974

    156. [156]

      N. Kornienko, Y. Zhao, C.S. Kley, et al., J. Am. Chem. Soc. 137 (2015) 14129–14135.  doi: 10.1021/jacs.5b08212

    157. [157]

      M. Lee, A. De Riccardis, R.V. Kazantsev, et al., ACS Appl. Energy Mater. 3 (2020) 1286–1291.  doi: 10.1021/acsaem.9b02210

    158. [158]

      X. Xiong, Y. Zhao, R. Shi, et al., Sci. Bull. 65 (2020) 987–994.

    159. [159]

      J.H. Cho, J. Ma, S.Y. Kim, Exploration 3 (2023) 20230001.

    160. [160]

      K. Wang, Y. Liu, J. Kang, et al., Appl. Catal. B 325 (2023) 122315.

    161. [161]

      D. Wang, S. Dong, L. Wen, et al., Chemosphere 291 (2022) 132889.

    162. [162]

      L. Liu, J. Zhang, X. Cheng, et al., Nano Res. 16 (2023) 181–188.

    163. [163]

      Q. Huang, X. Sha, R. Yang, et al., ACS Appl. Mater. Interfaces 16 (2024) 13882–13892.  doi: 10.1021/acsami.4c01120

    164. [164]

      D.D. Ma, Q.L. Zhu, Coord. Chem. Rev. 422 (2020) 213483.

    165. [165]

      Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969–19972.  doi: 10.1021/ja309317u

    166. [166]

      F. Yu, X. Bai, M. Liang, et al., Chem. Eng. J. 405 (2021) 126960.

    167. [167]

      H. Dai, W. Zhou, W. Wang, Chem. Eng. J. 417 (2021) 127921.

    168. [168]

      D.H. Nam, O. Shekhah, G. Lee, et al., J. Am. Chem. Soc. 142 (2020) 21513–21521.  doi: 10.1021/jacs.0c10774

    169. [169]

      W. Zhang, W. Yan, H. Jiang, et al., ACS Sustain. Chem. Eng. 8 (2020) 335–342.  doi: 10.1021/acssuschemeng.9b05474

    170. [170]

      Y. Shi, B. Zhu, X. Guo, et al., Energy Stor. Mater. 51 (2022) 840–872.

    171. [171]

      J.D. Yi, D.H. Si, R. Xie, et al., Angew. Chem. Int. Ed. 60 (2021) 17108–17114.  doi: 10.1002/anie.202104564

    172. [172]

      X. Guan, W. Gao, Q. Jiang, J. Mater. Chem. A 9 (2021) 4770–4780.  doi: 10.1039/d0ta11012d

    173. [173]

      L. Yan, W. Su, X. Cao, et al., Chem. Eng. J. 412 (2021) 128718.

    174. [174]

      K. Yao, H. Wang, X. Yang, et al., Appl. Catal. B 311 (2022) 121377.

    175. [175]

      X. Cao, B. Wulan, Y. Wang, et al., Sci. Bull. 68 (2023) 1008–1016.

    176. [176]

      C.G. Morales-Guio, E.R. Cave, S.A. Nitopi, et al., Nat. Catal. 1 (2018) 764–771.  doi: 10.1038/s41929-018-0139-9

    177. [177]

      Y. Zhao, C. Wang, Y. Liu, et al., Adv. Energy Mater. 8 (2018) 1801400.

    178. [178]

      W. Yang, Y. Zhao, S. Chen, et al., Inorg. Chem. 59 (2020) 12437–12444.  doi: 10.1021/acs.inorgchem.0c01544

    179. [179]

      Z. Chen, D. Zhang, Y. Zhao, et al., Chem. Eng. J. 464 (2023) 142573.

    180. [180]

      W. Ren, X. Tan, W. Yang, et al., Angew. Chem. Int. Ed. 58 (2019) 6972–6976.  doi: 10.1002/anie.201901575

    181. [181]

      J.X. Wu, X.R. Zhu, T. Liang, et al., Inorg. Chem. 60 (2021) 9653–9659.  doi: 10.1021/acs.inorgchem.1c00946

    182. [182]

      Z. Wang, Y. Zhou, D. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202200552.

    183. [183]

      Z. Chen, G. Yu, B. Li, et al., ACS Catal. 11 (2021) 14596–14604.  doi: 10.1021/acscatal.1c04182

    184. [184]

      Y. Qi, J. Jiang, X. Liang, et al., Adv. Funct. Mater. 31 (2021) 2100908.

    185. [185]

      W. Wang, X. Wang, Z. Ma, et al., ACS Catal. 13 (2023) 796–802.  doi: 10.1021/acscatal.2c05006

    186. [186]

      J. Zhai, Q. Kang, Q. Liu, et al., J. Colloid Interface Sci. 608 (2022) 1942–1950.

    187. [187]

      P. Deng, H. Wang, R. Qi, et al., ACS Catal. 10 (2020) 743–750.  doi: 10.1021/acscatal.9b04043

    188. [188]

      W. Guo, X. Sun, C. Chen, et al., Green Chem. 21 (2019) 503–508.  doi: 10.1039/c8gc03261k

    189. [189]

      Y. Xue, C. Li, X. Zhou, et al., ChemElectroChem 9 (2022) e202101648.

    190. [190]

      D.H. Zhuo, Q.S. Chen, X.H. Zhao, et al., J. Mater. Chem. C 9 (2021) 7900–7904.  doi: 10.1039/d1tc01766g

    191. [191]

      P. Deng, F. Yang, Z. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 10807–10813.  doi: 10.1002/anie.202000657

    192. [192]

      Y. Wang, Y. Li, J. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 7681–7685.  doi: 10.1002/anie.202014341

    193. [193]

      Y. Li, J. Chen, S. Chen, et al., ACS Energy Lett. 7 (2022) 1454–1461.  doi: 10.1021/acsenergylett.2c00326

    194. [194]

      S. Liu, Y. Fan, Y. Wang, et al., Nano Lett. 22 (2022) 9107–9114.  doi: 10.1021/acs.nanolett.2c03573

    195. [195]

      Y. Jia, M. Lin, Z. Tian, et al., J. Catal. 413 (2022) 1077–1088.

    196. [196]

      J. Yang, W. Li, D. Wang, et al., Adv. Mater. 32 (2020) 2003300.

    197. [197]

      S. Ji, Y. Qu, T. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 10651–10657.  doi: 10.1002/anie.202003623

    198. [198]

      N. Zhang, C. Ye, H. Yan, et al., Nano Res. 13 (2020) 3165–3182.  doi: 10.1007/s12274-020-2994-3

    199. [199]

      R. Yun, R. Xu, C. Shi, et al., Nano Res. 16 (2023) 8970–8976.  doi: 10.1007/s12274-023-5626-x

    200. [200]

      Y. Zhang, L. Jiao, W. Yang, et al., Angew. Chem. Int. Ed. 60 (2021) 7607–7611.  doi: 10.1002/anie.202016219

    201. [201]

      Z. Chen, X. Zhang, W. Liu, et al., Energy Environ. Sci. 14 (2021) 2349–2356.  doi: 10.1039/d0ee04052e

    202. [202]

      Q. Yang, C.C. Yang, C.H. Lin, et al., Angew. Chem. Int. Ed. 58 (2019) 3511–3515.  doi: 10.1002/anie.201813494

    203. [203]

      Y. Cheng, S. Zhao, B. Johannessen, et al., Adv. Mater. 30 (2018) 1706287.

    204. [204]

      P. Lu, X. Tan, H. Zhao, et al., ACS Nano 15 (2021) 5671–5678.  doi: 10.1021/acsnano.1c00858

    205. [205]

      S. Li, X. Lu, S. Zhao, et al., ACS Catal. 12 (2022) 7386–7395.  doi: 10.1021/acscatal.2c01805

    206. [206]

      J. Zhang, G. Zeng, L. Chen, et al., Nano Res. 15 (2022) 4014–4022.  doi: 10.1007/s12274-022-4177-x

    207. [207]

      Z. Fan, R. Luo, Y. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202216326.

  • 加载中
    1. [1]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    7. [7]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    8. [8]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    9. [9]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    10. [10]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    11. [11]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    12. [12]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    13. [13]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    14. [14]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    15. [15]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    18. [18]

      Xin-Lou YangJieying HuHao ZhongQia-Chun LinZhiqing LinLai-Hon ChungJun He . Building metal-thiolate sites and forming heterojunction in Hf- and Zr-based thiol-dense frameworks towards stable integrated photocatalyst for hydrogen evolution. Chinese Chemical Letters, 2025, 36(7): 110120-. doi: 10.1016/j.cclet.2024.110120

    19. [19]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    20. [20]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return