Citation: Yujie Zhu, Ruijianghan Shi, Weitong Lu, Yang Chen, Yunfeng Lin, Sirong Shi. Tetrahedral framework nucleic acids prevent epithelial-mesenchymal transition-mediated diabetic fibrosis by targeting the Wnt/β-catenin signaling pathway[J]. Chinese Chemical Letters, ;2025, 36(5): 110140. doi: 10.1016/j.cclet.2024.110140 shu

Tetrahedral framework nucleic acids prevent epithelial-mesenchymal transition-mediated diabetic fibrosis by targeting the Wnt/β-catenin signaling pathway

    * Corresponding author.
    E-mail addresses: sirongshi@scu.edu.cn (S. Shi).
  • Received Date: 3 April 2024
    Revised Date: 16 June 2024
    Accepted Date: 18 June 2024
    Available Online: 19 June 2024

Figures(4)

  • Diabetic kidney disease (DKD) is recognized as a severe complication in the development of diabetes mellitus (DM), posing a significant burden for global health. Major characteristics of DKD kidneys include tubulointerstitial oxidative stress, inflammation, excessive extracellular matrix deposition, and progressing renal fibrosis. However, current treatment options are limited and cannot offer enough efficacy, thus urgently requiring novel therapeutic approaches. Tetrahedral framework nucleic acids (tFNAs) are a novel type of self-assembled DNA nanomaterial with excellent structural stability, biocompatibility, tailorable functionality, and regulatory effects on cellular behaviors. In this study, we established an in vitro high glucose (HG)-induced human renal tubular epithelial cells (HK-2 cells) pro-fibrogenic model and explored the antioxidative, anti-inflammatory, and antifibrotic capacity of tFNAs and the potential molecular mechanisms. tFNAs not only effectively alleviated oxidative stress through reactive oxygen species (ROS)-scavenging and activating the serine and threonine kinase (Akt)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway but also inhibited the production of pro-inflammatory factors such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in diabetic HK-2 cells. Additionally, tFNAs significantly downregulated the expression of Collagen I and α-smooth muscle actin (α-SMA), two representative biomarkers of pro-fibrogenic myofibroblasts in the renal tubular epithelial-mesenchymal transition (EMT). Furthermore, we found that tFNAs exerted this function by inhibiting the Wnt/β-catenin signaling pathway, preventing the occurrence of EMT and fibrosis. The findings of this study demonstrated that tFNAs are naturally endowed with great potential to prevent fibrosis progress in DKD kidneys and can be further combined with emerging pharmacotherapies, providing a secure and efficient drug delivery strategy for future DKD therapy.
  • 加载中
    1. [1]

      Q. Hu, L. Jiang, Q. Yan, et al., Pharmacol. Ther. 241 (2023) 108314.

    2. [2]

      P.H. Hung, Y.C. Hsu, T.H. Chen, C.L. Lin, Int. J. Mol. Sci. 22 (2021) 11857.  doi: 10.3390/ijms222111857

    3. [3]

      G. Tang, S. Li, C. Zhang, et al., Acta Pharm. Sin. B 11 (2021) 2749–2767.

    4. [4]

      Y. Zheng, S.H. Ley, F.B. Hu, Nat. Rev. Endocrinol. 14 (2017) 88–98.

    5. [5]

      S.C.W. Tang, W.H. Yiu, Nat. Rev. Nephrol. 16 (2020) 206–222.  doi: 10.1038/s41581-019-0234-4

    6. [6]

      R. Qi, C. Yang, Cell Death Dis. 9 (2018) 1126.

    7. [7]

      Q. Hu, Y. Chen, X. Deng, et al., Biomed. Pharmacother. 159 (2023) 114252.

    8. [8]

      R. Huang, L. He, L. Jin, et al., Chin. Chem. Lett. 34 (2023) 107926.

    9. [9]

      T. Zhang, T. Tian,Y. Lin, Adv. Mater. 34 (2022) 2107820.

    10. [10]

      Z. Guo, B. Jin, Y. Fang, et al., Chin. Chem. Lett. 33 (2022) 4208–4212.

    11. [11]

      R.P. Goodman, R.M. Berry, A.J. Turberfield, Chem. Commun. (2004) 1372–1373.

    12. [12]

      T. Zhang, T. Tian, R. Zhou, et al., Nat. Protoc. 15 (2020) 2728–2757.  doi: 10.1038/s41596-020-0355-z

    13. [13]

      Y. Lin, Q. Li, L. Wang, et al., Int. J. Oral Sci. 14 (2022) 51.  doi: 10.1109/iccs56273.2022.9988197

    14. [14]

      Y. Guo, J. Tang, C. Yao, D. Yang, WIREs Nanomed. Nanobiotechnol. 14 (2021) e1753.

    15. [15]

      W. Chen, B.C. Yung, Z. Qian, X. Chen, Adv. Drug Deliv. Rev. 127 (2018) 20–34.

    16. [16]

      L. Chen, W. Hong, W. Ren, et al., Signal Transduct. Target. Ther. 6 (2021) 351.  doi: 10.32615/bp.2021.054

    17. [17]

      L. Chen, J. Zhang, Z. Lin, et al., Acta Pharm. Sin. B 12 (2022) 76–91.  doi: 10.1504/ijipt.2022.10048502

    18. [18]

      L. Wang, M.L. Javier, C. Luo, et al., Chin. Chem. Lett. (2024) 109591.

    19. [19]

      M. Zhou, S. Gao, X. Zhang, et al., Bioact. Mater. 6 (2021) 1676–1688.

    20. [20]

      Z. Guo, B. Jin, Y. Fang, et al., Chin. Chem. Lett. 35 (2024) 108528.

    21. [21]

      S. Shi, T. Tian, Y. Li, et al., ACS Appl Mater Interfaces 12 (2020) 56782–56791.  doi: 10.1021/acsami.0c17307

    22. [22]

      H. Wang, J. Gong, W. Chen, et al., Nano Today 56 (2024) 102252.

    23. [23]

      J. Zhu, M. Zhang, Y. Gao, et al., Signal Transduct. Target. Ther. 5 (2020) 120.

    24. [24]

      C. Cai, T. Wang, X. Han, et al., Chin. Chem. Lett. 33 (2022) 1963–1969.

    25. [25]

      S. Lin, Q. Zhang, S. Li, et al., Cell Prolif. 55 (2022) e13279.

    26. [26]

      T. Tian, C. Zhao, S. Li, et al., ACS Appl Mater Interfaces 15 (2023) 10492–10505.  doi: 10.1021/acsami.2c22579

    27. [27]

      L. Yao, J. Li, X. Qin, et al., ACS Mater. Lett. 5 (2023) 1153–1163.  doi: 10.1021/acsmaterialslett.2c00839

    28. [28]

      R. Yan, W. Cui, W. Ma, et al., ACS Nano 17 (2023) 8767–8781.  doi: 10.1021/acsnano.3c02102

    29. [29]

      Y.H. Zhang, Y.Q. Zhang, C.C. Guo, et al., Acta Pharmacol. Sin. 41 (2019) 561–571.  doi: 10.1029/2018rs006789

    30. [30]

      Q. Lu, L. Yang, J.-J. Xiao, et al., Free Radic. Biol. Med. 195 (2023) 89–102.

    31. [31]

      D. Yuan, H. Li, W. Dai, et al., Biochim. Biophys. Acta Mol. Basis Dis. 1870 (2024) 167022.

    32. [32]

      L. Liang, J. Li, Q. Li, et al., Angew. Chem. Int. Ed. 53 (2014) 7745–7750.  doi: 10.1002/anie.201403236

    33. [33]

      C. Mao, W. Pan, X. Shao, et al., ACS Appl Mater Interfaces 11 (2018) 1942–1950.

    34. [34]

      T. Tian, C. Zhang, J. Li, et al., Small 17 (2021) e2100837.

    35. [35]

      Q. Zhang, S. Lin, S. Shi, et al., ACS Appl Mater Interfaces 10 (2018) 3421–3430.  doi: 10.1021/acsami.7b17928

    36. [36]

      M. Zhou, T. Zhang, X. Zhang, et al., ACS Appl. Mater. Interfaces 14 (2022) 37478–37492.  doi: 10.1021/acsami.2c10364

    37. [37]

      K. Nowotny, T. Jung, A. Höhn, D. Weber, T. Grune, Biomolecules 5 (2015) 194–222.  doi: 10.3390/biom5010194

    38. [38]

      A.G. Miranda-Díaz, L. Pazarín-Villaseñor, F.G. Yanowsky-Escatell, J. Andrade-Sierra, J. Diabetes Res. 2016 (2016) 7047238.

    39. [39]

      S. Feng, Y. Qu, B. Chu, et al., Kidney Int. 102 (2022) 1057–1072.

    40. [40]

      Y. Li, Y. Tang, S. Shi, et al., ACS Appl. Mater. Interfaces 13 (2021) 40354–40364.  doi: 10.1021/acsami.1c11468

    41. [41]

      S. Lin, Q. Zhang, S. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 11397–11408.  doi: 10.1021/acsami.0c00874

    42. [42]

      Z. Wang, H. Lu, T. Tang, et al., Cell Prolif. 55 (2022) e13316.

    43. [43]

      L. Bai, M. Feng, Q. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2314789.  doi: 10.1002/adfm.202314789

    44. [44]

      Y. Li, J. Li, Y. Chang, Y. Lin, L. Sui, Chin. Chem. Lett. 35 (2024) 109414.  doi: 10.1016/j.cclet.2023.109414

    45. [45]

      M. Zhang, X. Zhang, T. Tian, et al., Bioact. Mater. 8 (2022) 368–380.

    46. [46]

      Y. Li, Z. Cai, W. Ma, et al., Bone Res. 12 (2024) 14.

    47. [47]

      A. Cuadrado, A.I. Rojo, G. Wells, et al., Nat. Rev. Drug Discov. 18 (2019) 295–317.  doi: 10.1038/s41573-018-0008-x

    48. [48]

      A. Loboda, M. Damulewicz, E. Pyza, A. Jozkowicz, J. Dulak, Cell. Mol. Life Sci. 73 (2016) 3221–3247.  doi: 10.1007/s00018-016-2223-0

    49. [49]

      F. Xu, H. Jiang, X. Li, et al., Adv. Sci. 11 (2023) 2306704.

    50. [50]

      G. Ke, X. Chen, R. Liao, et al., Kidney Int. 100 (2021) 377–390.

    51. [51]

      Y. Zhong, K. Lee, Y. Deng, et al., Nat. Commun. 10 (2019) 4523.

    52. [52]

      X. Zhou, Y. Lai, X. Xu, et al., Cell Prolif. 56 (2023) e13407.

    53. [53]

      X. Chen, J. He, Y. Xie, et al., Cell Prolif. 56 (2023) e13424.

    54. [54]

      W.J. Huang, W.J. Liu, Y.H. Xiao, et al., Biomed. Pharmacother. 121 (2020) 109599.

    55. [55]

      M. Khokhar, D. Roy, A. Modi, et al., Crit. Rev. Clin. Lab. Sci. 57 (2020) 470–483.  doi: 10.1080/10408363.2020.1746735

    56. [56]

      M. Edeling, G. Ragi, S. Huang, H. Pavenstädt, K. Susztak, Nat. Rev. Nephrol. 12 (2016) 426–439.  doi: 10.1038/nrneph.2016.54

    57. [57]

      Y. Ovadya, V. Krizhanovsky, Nat. Med. 21 (2015) 975–977.  doi: 10.1038/nm.3938

    58. [58]

      L. Du, Y. Chen, J. Shi, et al., Metabolism 144 (2023) 155376.

    59. [59]

      L. Zhou, D.Y. Xu, W.G. Sha, et al., J. Transl. Med. 13 (2015) 352.

    60. [60]

      J. Zhou, X. Peng, Y. Ru, J. Xu, Inflammation 45 (2022) 1911–1923.  doi: 10.1007/s10753-022-01649-6

    61. [61]

      S.J. Schunk, J. Floege, D. Fliser, T. Speer, Nat. Rev. Nephrol. 17 (2020) 172–184.

    62. [62]

      T.A. Wynn, T.R. Ramalingam, Nat. Med. 18 (2012) 1028–1040.  doi: 10.1038/nm.2807

    63. [63]

      S. Zhou, Q. Wu, X. Lin, et al., Kidney Int. 99 (2021) 364–381.

    64. [64]

      C. Jia, C. KeHong, X. Fei, et al., Kidney Int. 98 (2020) 645–662.

    65. [65]

      A. Niida, T. Hiroko, M. Kasai, et al., Oncogene 23 (2004) 8520–8526.  doi: 10.1038/sj.onc.1207892

    66. [66]

      J. Liu, Q. Xiao, J. Xiao, et al., Signal Transduct. Target. Ther. 7 (2022) 3.

    67. [67]

      Y. Chen, S. Shi, B. Li, et al., ACS Appl Mater Interfaces. 14 (2022) 13136–13146.  doi: 10.1021/acsami.2c02523

    68. [68]

      T. Tian, D. Xiao, T. Zhang, et al., Adv. Funct. Mater. 31 (2020) 2007342.

    69. [69]

      L. Zhang, L. Xu, Y. Wang, et al., Chin. Chem. Lett. 33 (2022) 4089–4095.

    70. [70]

      Y. Ge, Q. Wang, Y. Yao, et al., Adv Sci. 11 (2024) 2308701.  doi: 10.1002/advs.202308701

  • 加载中
    1. [1]

      Ruijianghan ShiYujie ZhuWeitong LuYuhan ShaoYang ChenMi ZhouYunfeng LinSirong Shi . Tetrahedral framework nucleic acids enhance osteogenic differentiation and prevent apoptosis for dental follicle stem cell therapy in diabetic bone repair. Chinese Chemical Letters, 2025, 36(5): 110241-. doi: 10.1016/j.cclet.2024.110241

    2. [2]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    3. [3]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    4. [4]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    5. [5]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    6. [6]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    7. [7]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    8. [8]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    9. [9]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    10. [10]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    11. [11]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    12. [12]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    13. [13]

      Junfei YangKe WangShuxin SunTianqi PeiJunxiu LiXunwei GongCuixia ZhengYun ZhangQingling SongLei Wang . A "spore-like" oral nanodrug delivery platform for precision targeted therapy of inflammatory bowel disease. Chinese Chemical Letters, 2025, 36(3): 110180-. doi: 10.1016/j.cclet.2024.110180

    14. [14]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    15. [15]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    16. [16]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    17. [17]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    20. [20]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

Metrics
  • PDF Downloads(1)
  • Abstract views(22)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return