Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater
-
* Corresponding author.
E-mail address: sili@cau.edu.cn (S. Li).
Citation:
Huijuan Li, Zhu Wang, Jiagen Geng, Ruiping Song, Xiaoyin Liu, Chaochen Fu, Si Li. Current advances in UV-based advanced oxidation processes for the abatement of fluoroquinolone antibiotics in wastewater[J]. Chinese Chemical Letters,
;2025, 36(4): 110138.
doi:
10.1016/j.cclet.2024.110138
S. Bhatt, S. Chatterjee, Environ. Pollut. 315 (2022) 120440.
E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E3463–E3470.
D. Schar, E.Y. Klein, R. Laxminarayan, et al., Sci. Rep. 10 (2020) 21878.
doi: 10.1038/s41598-020-78849-3
Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49 (2015) 6772–6782.
doi: 10.1021/acs.est.5b00729
I.T. Carvalho, L. Santos, Environ. Int. 94 (2016) 736–757.
X. Van Doorslaer, J. Dewulf, H. Van Langenhove, K. Demeestere, Sci. Total Environ. 500 (2014) 250–269.
M. Zou, W. Tian, J. Zhao, et al., Process Saf. Environ. Prot. 160 (2022) 116–129.
doi: 10.1016/j.psep.2022.02.013
S. Li, W. Shi, W. Liu, et al., Sci. Total Environ. 615 (2018) 906–917.
doi: 10.1016/j.scitotenv.2017.09.328
S. Li, Y. Liu, Y. Wu, et al., Natl. Sci. Open. 1 (2022) 20220029.
doi: 10.1360/nso/20220029
E.M. Golet, A.C. Alder, W. Giger, Environ. Sci. Technol. 36 (2002) 3645–3651.
doi: 10.1021/es0256212
M. Sturini, A. Speltini, F. Maraschi, et al., Chemosphere 134 (2015) 313–318.
doi: 10.1016/j.chemosphere.2015.04.081
Z. Li, J. Wang, J. Chang, et al., Sci. Total Environ. 857 (2023) 159172.
doi: 10.1016/j.scitotenv.2022.159172
R. Anjali, S. Shanthakumar, J. Environ. Manage. 246 (2019) 51–62.
doi: 10.1016/j.jenvman.2019.05.090
Y. Zhang, Y.G. Zhao, F. Maqbool, Y. Hu, J. Water Process. Eng. 45 (2022) 102496.
doi: 10.1016/j.jwpe.2021.102496
Y. Chuang, S. Chen, C. Chinn, W. Mitch, Environ. Sci. Technol. 51 (2017) 13859–13868.
doi: 10.1021/acs.est.7b03570
C. Wang, N. Moore, K. Bircher, et al., Water Res. 161 (2019) 448–458.
doi: 10.1016/j.watres.2019.06.033
J. Rodriguez-Chueca, S. Varella della Giustina, J. Rocha, et al., Sci. Total Environ. 652 (2019) 1051–1061.
doi: 10.1016/j.scitotenv.2018.10.223
J. Rodríguez-Chueca, E. Laski, C. García-Cañibano, et al., Sci. Total Environ. 630 (2018) 1216–1225.
doi: 10.1016/j.scitotenv.2018.02.279
Y. Chen, J. Yang, L. Zeng, M. Zhu, Crit. Rev. Environ. Sci. Technol. 52 (2022) 1401–1448.
doi: 10.1080/10643389.2020.1859289
S. Shurbaji, P.T. Huong, T.M. Altahtamouni, Catalysts 11 (2021) 437.
doi: 10.3390/catal11040437
Y. Gou, P. Chen, L. Yang, et al., Chemosphere 270 (2021) 129481.
doi: 10.1016/j.chemosphere.2020.129481
X. Liu, Y. Zhou, J. Zhang, et al., Chem. Eng. J. 347 (2018) 379–397.
doi: 10.1016/j.cej.2018.04.142
T. Song, G. Li, R. Hu, et al., Catalysts 12 (2022) 1025.
doi: 10.3390/catal12091025
Z. Lu, Y. Ling, W. Sun, et al., Environ. Pollut. 308 (2022) 119673.
doi: 10.1016/j.envpol.2022.119673
X. Luo, B. Zhang, Y. Lu, et al., J. Hazard. Mater. 421 (2022) 126682.
doi: 10.1016/j.jhazmat.2021.126682
H.D.M. Tran, S. Boivin, H. Kodamatani, et al., Chemosphere 286 (2022) 131682.
doi: 10.1016/j.chemosphere.2021.131682
R. Shankar, W.J. Shim, J.G. An, U.H. Yim, Water Res. 68 (2015) 304–315.
doi: 10.1016/j.watres.2014.10.012
W. Qiu, M. Zheng, J. Sun, et al., Sci. Total Environ. 651 (2019) 1457–1468.
doi: 10.1016/j.scitotenv.2018.09.315
Y. Zhang, K. Huang, Y. Zhu, et al., RSC Adv. 12 (2022) 10088–10096.
doi: 10.1039/d2ra00199c
X. Zeng, Y. Meng, X. Sun, et al., J. Environ. Chem. Eng. 9 (2021) 106608.
doi: 10.1016/j.jece.2021.106608
X. Ao, W. Wang, W. Sun, et al., Water Res. 203 (2021) 117458.
doi: 10.1016/j.watres.2021.117458
K. Guo, Z. Wu, S. Yan, et al., Water Res. 147 (2018) 184–194.
doi: 10.1016/j.watres.2018.08.048
H. Milh, X. Yu, D. Cabooter, R. Dewil, Sci. Total Environ. 764 (2021) 144510.
doi: 10.1016/j.scitotenv.2020.144510
H. Yang, Y. Li, Y. Chen, et al., Water Environ. Res. 91 (2019) 1576–1588.
doi: 10.1002/wer.1144
H. Xue, S. Gao, N. Zheng, et al., Water Sci. Technol. 79 (2019) 2387–2394.
doi: 10.2166/wst.2019.240
C.C. Lin, H.Y. Lin, Desalin. Water Treat. 167 (2019) 170–175.
doi: 10.5004/dwt.2019.24602
J. Deng, G. Wu, S. Yuan, et al., J. Photochem. Photobiol. A: Chem. 371 (2019) 151–158.
doi: 10.1016/j.jphotochem.2018.10.043
X. Zhang, K. Guo, Y. Wang, et al., Chem. Eng. J. 400 (2020) 125222.
doi: 10.1016/j.cej.2020.125222
J. Lu, J. Li, J. Xu, et al., J. Water Process Eng. 44 (2021) 102324.
doi: 10.1016/j.jwpe.2021.102324
H. Liu, Y. Gao, J. Wang, et al., Chemosphere 276 (2021) 130220.
doi: 10.1016/j.chemosphere.2021.130220
D. Krakko, A. Illes, V. Licul-Kucera, et al., Chemosphere 275 (2021) 130080.
doi: 10.1016/j.chemosphere.2021.130080
Q. Ping, T. Yan, L. Wang, et al., Water Res. 210 (2022) 118019.
doi: 10.1016/j.watres.2021.118019
Q. Wu, Z. Que, Z. Li, et al., J. Hazard. Mater. 359 (2018) 414–420.
doi: 10.1016/j.jhazmat.2018.07.041
C. Zhao, Y. Li, H. Chu, et al., J. Hazard. Mater. 419 (2021) 126466.
doi: 10.1016/j.jhazmat.2021.126466
K. Saravanakumar, C.M. Park, Chem. Eng. J. 423 (2021) 130076.
doi: 10.1016/j.cej.2021.130076
V.T. Le, V.A. Tran, D.L. Tran, et al., Chemosphere 270 (2021) 129417.
doi: 10.1016/j.chemosphere.2020.129417
J. Lei, B. Chen, L. Zhou, et al., Chem. Eng. J. 400 (2020) 125902.
doi: 10.1016/j.cej.2020.125902
J. Li, Z. Xia, D. Ma, et al., J. Colloid Interface Sci. 586 (2021) 243–256.
doi: 10.1016/j.jcis.2020.10.088
Q. Chen, M. Zhang, J. Li, et al., Chem. Eng. J. 389 (2020) 124476.
doi: 10.1016/j.cej.2020.124476
Q. Zhang, F. Han, Y. Yan, et al., Appl. Surf. Sci. 485 (2019) 547–553.
doi: 10.1016/j.apsusc.2019.04.185
R. Du, P. Chen, Q. Zhang, G. Yu, Chemosphere 273 (2021) 128435.
doi: 10.1016/j.chemosphere.2020.128435
X. Zeng, X. Sun, Y. Yu, et al., Chem. Eng. J. 378 (2019) 122226.
doi: 10.1016/j.cej.2019.122226
L. Yang, Y. Xiang, F. Jia, et al., Appl. Catal. B: Environ. 292 (2021) 120198.
doi: 10.1016/j.apcatb.2021.120198
Y. Tian, X. He, W. Chen, et al., Sci. Total Environ. 723 (2020) 138144.
doi: 10.1016/j.scitotenv.2020.138144
O. Autin, C. Romelot, L. Rust, et al., Chemosphere 92 (2013) 745–751.
doi: 10.1016/j.chemosphere.2013.04.028
S. Li, J. Hu, Water Res. 132 (2018) 320–330.
doi: 10.1016/j.watres.2017.12.065
T.K. Kim, T. Kim, H. Park, et al., Chem. Eng. J. 394 (2020) 124803.
doi: 10.1016/j.cej.2020.124803
S. Li, T. Huang, P. Du, et al., Water Res. 185 (2020) 116286.
doi: 10.1016/j.watres.2020.116286
S. Guerra-Rodriguez, A.R. Lado Ribeiro, R.S. Ribeiro, et al., Sci. Total Environ. 770 (2021) 145299.
doi: 10.1016/j.scitotenv.2021.145299
P. Chen, L. Blaney, G. Cagnetta, et al., Environ. Sci. Technol. 53 (2019) 1564–1575.
doi: 10.1021/acs.est.8b05827
D. Cheng, H. Liu, E. Yang, et al., Sci. Total Environ. 773 (2021) 145102.
doi: 10.1016/j.scitotenv.2021.145102
X. Liu, Y. Liu, S. Lu, et al., Chem. Eng. J. 385 (2020) 123987.
doi: 10.1016/j.cej.2019.123987
W.K. Ye, F.X. Tian, B. Xu, et al., Sep. Purif. Technol. 280 (2022) 119846.
doi: 10.1016/j.seppur.2021.119846
D.A. Armstrong, R.E. Huie, W.H. Koppenol, et al., Pure Appl. Chem. 87 (2015) 1139–1150.
doi: 10.1515/pac-2014-0502
J. Lee, U. von Gunten, J.H. Kim, Environ. Sci. Technol. 54 (2020) 3064–3081.
doi: 10.1021/acs.est.9b07082
T. Luukkonen, T. Heyninck, J. Rämö, U. Lassi, Water Res. 85 (2015) 275–285.
doi: 10.1016/j.watres.2015.08.037
H. Zhang, L. Chen, P. Du, et al., Environ. Sci. Technol. 58 (2024) 3506–3519.
M. Sturini, F. Maraschi, A. Cantalupi, et al., Materials 13 (2020) 537.
doi: 10.3390/ma13030537
M. Eskandari, N. Goudarzi, S.G. Moussavi, Water Environ. J. 32 (2018) 58–66.
doi: 10.1111/wej.12291
E.A. Serna-Galvis, Y. Avila-Torres, M. Ibanez, et al., Water 13 (2021) 2154.
doi: 10.3390/w13162154
L. Pretali, F. Maraschi, A. Cantalupi, et al., Catalysts 10 (2020) 628.
doi: 10.3390/catal10060628
A. Kaur, A. Umar, W.A. Anderson, S.K. Kansal, J. Photochem. Photobiol. A: Chem. 360 (2018) 34–43.
doi: 10.1016/j.jphotochem.2018.04.021
A. Siddique, M.B. Tahir, I. Shahid, et al., Appl. Nanosci. 12 (2022) 1613–1626.
doi: 10.1007/s13204-021-02313-5
L. Wolski, K. Grzelak, M. Munko, et al., Appl. Surf. Sci. 563 (2021) 150338.
doi: 10.1016/j.apsusc.2021.150338
N. Kaur, A. Verma, I. Thakur, S. Basu, Chemosphere 276 (2021) 130180.
doi: 10.1016/j.chemosphere.2021.130180
K. Qin, Q. Zhao, H. Yu, et al., Environ. Res. 199 (2021) 111360.
doi: 10.1016/j.envres.2021.111360
T. Senasu, T. Narenuch, K. Wannakam, et al., J. Mater. Sci.: Mater. Electron. 31 (2020) 9685–9694.
doi: 10.1007/s10854-020-03514-4
T. Chankhanittha, V. Somaudon, T. Photiwat, et al., J. Phys. Chem. Solids. 153 (2021) 109995.
doi: 10.1016/j.jpcs.2021.109995
W. Liu, J. Zhou, J. Yao, Ecotoxicol. Environ. Saf. 190 (2020) 110062.
doi: 10.1016/j.ecoenv.2019.110062
X. Zheng, S. Xu, Y. Wang, et al., J. Colloid Interface Sci. 527 (2018) 202–213.
doi: 10.1016/j.jcis.2018.05.054
S. Moles, J. Berges, M.P. Ormad, et al., Environ. Sci. Pollut. Res. 28 (2021) 24167–24179.
doi: 10.1007/s11356-021-12542-4
X. Huang, S. Wu, S. Tang, et al., J. Mol. Liq. 317 (2020) 113961.
doi: 10.1016/j.molliq.2020.113961
C. Zhang, M. Jia, Z. Xu, et al., Chem. Eng. J. 430 (2022) 132652.
doi: 10.1016/j.cej.2021.132652
Q. Wu, M.S. Siddique, Y. Guo, et al., Appl. Catal. B: Environ. 286 (2021) 119950.
doi: 10.1016/j.apcatb.2021.119950
C. Yang, X. Wang, L. Zhang, et al., J. Taiwan Inst. Chem. Eng. 115 (2020) 117–127.
doi: 10.1016/j.jtice.2020.09.036
L. Rizzo, Environ. Sci. Water Res. Technol. 8 (2022) 2145–2169.
doi: 10.1039/d2ew00146b
H. Luo, Y. Zeng, D. He, X. Pan, Chem. Eng. J. 407 (2021) 127191.
doi: 10.1016/j.cej.2020.127191
Y. Jiang, J. Ran, K. Mao, et al., Ecotoxicol. Environ. Saf. 236 (2022) 113464.
doi: 10.1016/j.ecoenv.2022.113464
S.K. Mondal, A.K. Saha, A. Sinha, J. Cleaner Prod. 171 (2018) 1203–1214.
doi: 10.1016/j.jclepro.2017.10.091
H. Dan, Y. Kong, Q. Yue, et al., Chem. Eng. J. 420 (2021) 127634.
doi: 10.1016/j.cej.2020.127634
W. He, Z. Li, S. Lv, et al., Chem. Eng. J. 409 (2021) 128274.
doi: 10.1016/j.cej.2020.128274
W. Li, Y. Wang, J. Chen, et al., Appl. Catal. B: Environ. 302 (2022) 120882.
doi: 10.1016/j.apcatb.2021.120882
A. Hassani, J. Scaria, F. Ghanbari, P.V. Nidheesh, Environ. Res. 217 (2023) 114789.
doi: 10.1016/j.envres.2022.114789
J. Yang, M. Zhu, D.D. Dionysiou, Water Res. 189 (2021) 116627.
doi: 10.1016/j.watres.2020.116627
Y. Sun, D.W. Cho, N.J.D. Graham, et al., Sci. Total Environ. 664 (2019) 312–321.
doi: 10.1016/j.scitotenv.2019.02.006
E. Ngumba, A. Gachanja, T. Tuhkanen, Water Environ. J. 34 (2020) 692–703.
doi: 10.1111/wej.12612
L. Wang, J. Wei, Y. Li, et al., Chem. Eng. J. 477 (2023) 147051.
doi: 10.1016/j.cej.2023.147051
T. Luukkonen, S.O. Pehkonen, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1–39.
doi: 10.1080/10643389.2016.1272343
X. Ao, X. Zhang, S. Li, et al., J. Hazard. Mater. 445 (2023) 130480.
doi: 10.1016/j.jhazmat.2022.130480
Z. Diao, J. Jin, M. Zou, et al., Sep. Purif. Technol. 278 (2021) 119620.
doi: 10.1016/j.seppur.2021.119620
Z.H. Diao, S.T. Huang, X. Chen, et al., J. Cleaner Prod. 330 (2022) 129806.
doi: 10.1016/j.jclepro.2021.129806
J. Wu, J. Bai, Z. Wang, et al., Environ. Technol. 43 (2022) 95–106.
doi: 10.1080/09593330.2020.1779353
H. Tang, Z. Dai, X. Xie, et al., Chem. Eng. J. 356 (2019) 472–482.
doi: 10.1016/j.cej.2018.09.066
Y. h. Tian, N. Jia, L. Zhou, et al., Chemosphere 288 (2022) 132627.
doi: 10.1016/j.chemosphere.2021.132627
D. Li, Z. Feng, B. Zhou, et al., Sci. Total Environ. 844 (2022) 157162.
doi: 10.1016/j.scitotenv.2022.157162
P. Wang, H. Zhang, Z. Wu, et al., Chin. Chem. Lett. 34 (2023) 108722.
doi: 10.1016/j.cclet.2023.108722
F. Wang, Y. Feng, P. Chen, et al., Appl. Catal. B: Environ. 227 (2018) 114–122.
doi: 10.1016/j.apcatb.2018.01.024
G. Wang, Y. Li, J. Dai, N. Deng, Environ. Sci. Pollut. Res. 29 (2022) 48522–48538.
doi: 10.1007/s11356-022-19269-w
H. Abdelraouf, J. Ding, J. Ren, et al., Process Saf. Environ. Prot. 168 (2022) 892–906.
doi: 10.1016/j.psep.2022.10.069
M. Kumaresan, V. Saravanan, M. Swaminathan, Inorg. Chem. Commun. 142 (2022) 109706.
doi: 10.1016/j.inoche.2022.109706
K. Jutarvutikul, C. Sakulthaew, C. Chokejaroenrat, et al., Aquacult. Eng. 94 (2021) 102174.
doi: 10.1016/j.aquaeng.2021.102174
A.S. Giri, A.K. Golder, J. Environ. Sci. 80 (2019) 82–92.
doi: 10.1016/j.jes.2018.09.016
C. Wang, J. Zhang, J. Du, et al., J. Hazard. Mater. 416 (2021) 125893.
doi: 10.1016/j.jhazmat.2021.125893
G. Harini, M.K. Okla, I.A. Alaraidh, et al., Chemosphere 303 (2022) 134963.
doi: 10.1016/j.chemosphere.2022.134963
X. Ao, W. Liu, W. Sun, et al., Chem. Eng. J. 345 (2018) 87–97.
doi: 10.1016/j.cej.2018.03.133
Y. Qi, R. Qu, J. Liu, et al., Chemosphere 237 (2019) 124484.
doi: 10.1016/j.chemosphere.2019.124484
S.P. Asu, N.K. Sompalli, S. Kuppusamy, et al., Mater. Today Sustain. 19 (2022) 100189.
N. Yin, H. Chen, X. Yuan, et al., J. Hazard. Mater. 436 (2022) 129317.
doi: 10.1016/j.jhazmat.2022.129317
H. Guo, N. Gao, Y. Yang, Y. Zhang, Chem. Eng. J. 292 (2016) 82–91.
doi: 10.1016/j.cej.2016.01.009
M. Kamagate, A.A. Assadi, T. Kone, et al., J. Hazard. Mater. 346 (2018) 159–166.
doi: 10.1016/j.jhazmat.2017.12.011
Y. Park, S. Kim, J. Kim, et al., Water 14 (2022) 958.
doi: 10.3390/w14060958
F.H. Borba, A. Schmitz, L. Pellenz, et al., J. Environ. Chem. Eng. 6 (2018) 6979–6988.
doi: 10.1016/j.jece.2018.10.068
Y. Zhu, M. Wei, Z. Pan, et al., Sci. Total Environ. 705 (2020) 135960.
doi: 10.1016/j.scitotenv.2019.135960
S. Li, J.Y. Hu, J. Hazard. Mater. 318 (2016) 134–144.
doi: 10.1016/j.jhazmat.2016.05.100
F. Tan, D. Sun, J. Gao, et al., J. Hazard. Mater. 244 (2013) 750–757.
Z. Li, X. Yuan, H. Tang, et al., Environ. Sci. Water Res. Technol. 8 (2022) 2744–2760.
doi: 10.1039/d2ew00320a
A. Wang, H. Wang, H. Deng, et al., Appl. Catal. B: Environ. 248 (2019) 298–308.
doi: 10.1016/j.apcatb.2019.02.034
Y. Yu, K. Liu, Y. Zhang, et al., Int. J. Environ. Res. Public Health 19 (2022) 4793.
doi: 10.3390/ijerph19084793
F. Wang, X. Yu, M. Ge, S. Wu, Chem. Eng. J. 384 (2020) 123381.
doi: 10.1016/j.cej.2019.123381
O. Gomes Junior, V.M. Silva, A.E.H. Machado, et al., J. Environ. Manage. 213 (2018) 20–26.
doi: 10.1016/j.jenvman.2018.02.041
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Chu Chu , Yuancheng Qin , Cailing Ni , Jianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036