Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene
-
* Corresponding author.
E-mail address: penghonggen@ncu.edu.cn (H. Peng).
Citation:
Tianyao He, Gan Li, Xiaoqiang Xie, Dong Han, Yunyue Leng, Qiuli Zhang, Wenming Liu, Guobo Li, Hongxiang Zhang, Shan Huang, Ting Huang, Honggen Peng. Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene[J]. Chinese Chemical Letters,
;2025, 36(4): 110137.
doi:
10.1016/j.cclet.2024.110137
Q. Gao, L. Sun, Z. Wang, et al., Chin. Chem. Lett. 35 (2024) 109255.
M. Qi, Z. Li, Z. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107437.
doi: 10.1016/j.cclet.2022.04.035
Y. Guo, M. Wen, G. Li, et al., Appl. Catal. B: Environ. 281 (2021) 119447.
doi: 10.1016/j.apcatb.2020.119447
C. He, J. Cheng, X. Zhang, et al., Chem. Rev. 119 (2019) 4471–4568.
doi: 10.1021/acs.chemrev.8b00408
R. Peng, S. Li, X. Sun, et al., Appl. Catal. B: Environ. 220 (2018) 462–470.
doi: 10.1016/j.apcatb.2017.07.048
Z. Su, W. Yang, C. Wang, et al., Environ. Sci. Technol. 54 (2020) 12684–12692.
doi: 10.1021/acs.est.0c03981
C. Dong, H. Wang, Y. Ren, et al., J. Environ. Sci. 104 (2021) 102–112.
doi: 10.1016/j.jes.2020.11.003
J. He, D. Chen, N. Li, et al., Appl. Catal. B: Environ. 265 (2020) 118560.
doi: 10.1016/j.apcatb.2019.118560
Y. Shen, J. Deng, S. Impeng, et al., Environ. Sci. Technol. 54 (2020) 10342–10350.
doi: 10.1021/acs.est.0c02680
W. Yang, Y. Peng, Y. Wang, et al., Appl. Catal. B: Environ. 278 (2020) 119279.
doi: 10.1016/j.apcatb.2020.119279
N. Fu, X. Liang, X. Wang, et al., J. Am. Chem. Soc. 145 (2023) 9540–9547.
doi: 10.1021/jacs.2c11739
N. Ye, J. Zheng, K. Xie, et al., J. Rare Earths 41 (2023) 889–895.
doi: 10.1016/j.jre.2022.12.009
T. He, W. Wang, F. Shi, et al., Nature 598 (2021) 76–81.
doi: 10.1038/s41586-021-03870-z
Y. Ma, A.N. Kuhn, W. Gao, et al., Nano Energy 79 (2021) 105465.
doi: 10.1016/j.nanoen.2020.105465
Y. Yang, I.B. Perry, G. Lu, et al., Science 353 (2016) 144–150.
doi: 10.1126/science.aaf7720
S. Ye, F. Luo, Q. Zhang, et al., Energy Environ. Sci. 12 (2019) 1000–1007.
doi: 10.1039/c8ee02888e
Z. Wang, H. Yang, R. Liu, et al., J. Hazard. Mater. 392 (2020) 122258.
doi: 10.1016/j.jhazmat.2020.122258
M. Song, E. Eom, J.W. Shin, et al., Angew. Chem. Int. Ed. 62 (2023) e202303503.
doi: 10.1002/anie.202303503
X. Fu, Y. Liu, J. Deng, et al., Appl. Catal. A: Gen. 595 (2020) 117509.
doi: 10.1016/j.apcata.2020.117509
S. Hu, W.X. Li, Science 374 (2021) 1360–1365.
doi: 10.1126/science.abi9828
H. Peng, T. Dong, S. Yang, et al., Nat. Commun. 13 (2022) 13–295.
L. Wei, Y. Liu, S. Cui, et al., Adv. Funct. Mater. (2023) 2306129.
doi: 10.1002/adfm.202306129
R. Ryoo, Nature 575 (2019) 40–41.
doi: 10.1038/d41586-019-02835-7
D. Zhao, J. Feng, Q. Huo, et al., Science 279 (1998) 548–552.
doi: 10.1126/science.279.5350.548
C. Hohner, M. Ronovský, O. Brummel, et al., J. Catal. 398 (2021) 171–184.
doi: 10.1016/j.jcat.2021.04.005
S. Liu, Y. Li, X. Yu, et al., Nat. Commun. 13 (2022) 1–10.
Y. Shi, Z. Li, J. Wang, et al., Appl. Catal. B: Environ. 286 (2021) 119936.
doi: 10.1016/j.apcatb.2021.119936
Y. Su, K. Fu, Y. Zheng, et al., Appl. Catal. B: Environ. 288 (2021) 119980.
doi: 10.1016/j.apcatb.2021.119980
M. Xiao, X. Yu, Y. Guo, et al., Environ. Sci. Technol. 56 (2022) 1376–1385.
doi: 10.1021/acs.est.1c07016
J. Xie, H. Jiang, S. Guo, A.C.S. Appl. Nano Mater. 4 (2021) 3044–3051.
doi: 10.1021/acsanm.1c00184
L. Yang, Q. Liu, R. Han, et al., Appl. Catal. B: Environ. 309 (2022) 121224.
doi: 10.1016/j.apcatb.2022.121224
M. Javed, S. Cheng, G. Zhang, et al., Fuel 215 (2018) 226–231.
doi: 10.1016/j.fuel.2017.10.042
T. Otto, S.I. Zones, E. Iglesia, J. Catal. 339 (2016) 195–208.
doi: 10.1016/j.jcat.2016.04.015
T. Otto, J.M. Ramallo-López, L.J. Giovanetti, et al., J. Catal. 342 (2016) 125–137.
doi: 10.1016/j.jcat.2016.07.017
N. Wang, Q. Sun, J. Yu, Adv. Mater. 31 (2019) 1803966.
doi: 10.1002/adma.201803966
Z. Wu, S. Goel, M. Choi, et al., J. Catal. 311 (2014) 458–468.
doi: 10.1016/j.jcat.2013.12.021
L. Li, A. Cheruvathur, S. Zuo, et al., Appl. Catal. B: Environ. 299 (2021) 120670.
doi: 10.1016/j.apcatb.2021.120670
X. Liu, J. Mi, L. Shi, et al., Angew. Chem. Int. Ed. 60 (2021) 26747–26754.
doi: 10.1002/anie.202111610
H. Huang, D.Y.C. Leung, J. Catal. 280 (2011) 60–67.
doi: 10.1016/j.jcat.2011.03.003
Q. Feng, X. Wang, M. Klingenhof, et al., Angew. Chem. Int. Ed. 61 (2022) e202203728.
doi: 10.1002/anie.202203728
C. Chen, F. Chen, L. Zhang, et al., Chem. Commun. 51 (2015) 5936–5938.
doi: 10.1039/C4CC09383F
P. Yan, S. Xi, H. Peng, et al., J. Am. Chem. Soc. 145 (2023) 9718–9728.
doi: 10.1021/jacs.3c01304
Q. Sun, B.W.J. Chen, N. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 20183–20191.
doi: 10.1002/anie.202008962
J. Xu, Y. Wang, K. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202302877.
doi: 10.1002/anie.202302877
S. Mo, J. Li, R. Liao, et al., Chem. Eng. J. 418 (2021) 129399.
doi: 10.1016/j.cej.2021.129399
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Naihong Wang , Longkang Zhang , Yejun Guan , Peng Wu , Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928