Multifunctional gel electrolytes for high-performance zinc metal batteries
-
* Corresponding author..
E-mail address: wangqh@jsnu.edu.cn (Q. Wang).
1 These authors contributed equally to this work.
Citation:
Mengya Ge, Zijie Zhou, Huaiyang Zhu, Ying Wang, Chao Wang, Chao Lai, Qinghong Wang. Multifunctional gel electrolytes for high-performance zinc metal batteries[J]. Chinese Chemical Letters,
;2025, 36(7): 110121.
doi:
10.1016/j.cclet.2024.110121
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.
doi: 10.1039/c6cs00776g
R. Hou, B. Liu, Y. Sun, et al., Nano Energy 72 (2020) 104728.
H. Pan, Y.S. Hu, L. Chen, Energy Environ. Sci. 6 (2013) 2338–2360.
doi: 10.1039/c3ee40847g
N. Nitta, F. Wu, J.T. Lee, et al., Mater. Today 18 (2015) 252–264.
K. Kang, Y.S. Meng, J. Breger, et al., Science 311 (2006) 977–980.
doi: 10.1126/science.1122152
E. Fan, L. Li, Z. Wang, et al., Chem. Rev. 120 (2020) 7020–7063.
doi: 10.1021/acs.chemrev.9b00535
H. Wang, Z. Yu, X. Kong, et al., Adv. Mater. 33 (2021) 2008619.
B. Tang, L. Shan, S. Liang, et al., Energy Environ. Sci. 12 (2019) 3288–3304.
doi: 10.1039/c9ee02526j
M. Li, J. Lu, Z. Chen, et al., Adv. Mater. 30 (2018) 1800561.
doi: 10.1002/adma.201800561
X. Zhang, Z. Li, L. Luo, et al., Energy 238 (2022) 121652.
M. Bao, Z. Zhang, X. An, et al., Nano Res. 16 (2022) 2445–2453.
H. Zhang, X. Liu, H. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 598–616.
doi: 10.1002/anie.202004433
W. Zhang, G. He, Angew. Chem. Int. Ed. 62 (2023) e202218466.
doi: 10.1002/anie.202218466
J. Li, Q. Kuang, G. Wang, et al., Electrochim. Acta 441 (2023) 141841.
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
Y. Shi, Y. Chen, L. Shi, et al., Small 16 (2020) e2000730.
doi: 10.1002/smll.202000730
T. Shoji, M. Hishinuma, T. Yamamoto, J. Appl. Electrochem. 18 (1988) 521–526.
C. Xu, B. Li, H. Du, et al., Angew. Chem. Int. Ed. 51 (2012) 933–935.
doi: 10.1002/anie.201106307
C. Guo, S. Yi, R. Si, et al., Adv. Energy Mater. 12 (2022) 2202039.
J. Zhou, Q. Li, X. Hu, et al., Chin. Chem. Lett. 35 (2023) 109143.
Y. Zhang, M. Zhu, K. Wu, et al., J. Mater. Chem. A 9 (2021) 4253–4261.
doi: 10.1039/d0ta11668h
L. Ma, S. Chen, H. Li, et al., Energy Environ. Sci. 11 (2018) 2521–2530.
doi: 10.1039/c8ee01415a
X. Jia, C. Liu, Z.G. Neale, et al., Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
X. Zhang, J.P. Hu, N. Fu, et al., InfoMat 4 (2022) e12306.
W. Du, E.H. Ang, Y. Yang, et al., Energy Environ. Sci. 13 (2020) 3330–3360.
doi: 10.1039/d0ee02079f
D. Chen, M. Lu, D. Cai, et al., J. Energy Chem. 54 (2021) 712–726.
doi: 10.1016/j.jechem.2020.06.016
X. Zeng, J. Hao, Z. Wang, et al., Energy Stor. Mater. 20 (2019) 410–437.
T.H. Muster, I.S. Cole, Corros. Sci. 46 (2004) 2319–2335.
R. Zhao, X. Dong, P. Liang, et al., Adv. Mater. 35 (2023) 2209288.
doi: 10.1002/adma.202209288
J. Cao, D. Zhang, X. Zhang, et al., Energy Environ. Sci. 15 (2022) 499–528.
doi: 10.1039/d1ee03377h
A. Naveed, T. Rasheed, B. Raza, et al., Energy Stor. Mater. 44 (2022) 206–230.
doi: 10.1016/j.ensm.2021.10.005
Q. Li, A. Chen, D. Wang, et al., Nat. Commun. 13 (2022) 3699.
B. Wu, B. Guo, Y. Chen, et al., Energy Stor. Mater. 54 (2023) 75–84.
P. Xue, C. Guo, L. Li, et al., Adv. Mater. 34 (2022) 2110047.
doi: 10.1002/adma.202110047
Z. Ye, Z. Cao, M.O. Lam Chee, et al., Energy Stor. Mater. 32 (2020) 290–305.
J. Hao, L. Yuan, C. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7366–7375.
doi: 10.1002/anie.202016531
C. Li, Z. Sun, T. Yang, et al., Adv. Mater. 32 (2020) 2003425.
doi: 10.1002/adma.202003425
J. Cao, D. Zhang, C. Gu, et al., Nano Energy 89 (2021) 106322.
doi: 10.1016/j.nanoen.2021.106322
H. Li, S. Guo, H. Zhou, Energy Stor. Mater. 56 (2023) 227–257.
doi: 10.1117/12.3007414
Z. Zhang, B. Xi, X. Ma, et al., SusMat 2 (2022) 114–141.
doi: 10.1002/sus2.53
Y. Shang, P. Kumar, T. Musso, et al., Adv. Funct. Mater. 32 (2022) 2200606.
X. Wang, K. Feng, B. Sang, et al., Adv. Energy Mater. 13 (2023) 2301670.
K.X. Xie, K.X. Ren, Q.H. Wang, et al., eScience 3 (2023) 100153.
F. Wan, Y. Zhang, L. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 7062–7067.
doi: 10.1002/anie.201902679
C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.
doi: 10.1039/c8cc07730d
Y. Qi, M. Liao, Y. Xie, et al., Chem. Eng. J. 470 (2023) 143971.
H. Li, L. Ma, C. Han, et al., Nano Energy 62 (2019) 550–587.
Z. Pan, J. Yang, J. Jiang, et al., Mater. Today Energy 18 (2020) 100523.
doi: 10.1016/j.mtener.2020.100523
Z. Li, L. Wu, S. Dong, et al., Adv. Funct. Mater. 31 (2020) 2006495.
doi: 10.1002/adfm.202006495
T. Zhang, Y. Tang, S. Guo, et al., Energy Environ. Sci. 13 (2020) 4625–4665.
doi: 10.1039/d0ee02620d
J. Huang, X. Dong, N. Wang, et al., Curr. Opin. Electrochem. 33 (2022) 100949.
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, et al., Nat. Energy 6 (2021) 227–239.
doi: 10.1038/s41560-020-00759-5
X. Xu, K.S. Hui, K.N. Hui, et al., Mater. Horiz. 7 (2020) 1246–1278.
doi: 10.1039/c9mh01701a
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/c9cs00131j
D. Kundu, B.D. Adams, V. Duffort, et al., Nat. Energy 1 (2016) 16119.
S. Gao, Z. Zhang, F. Mao, et al., Mater. Chem. Front. 7 (2023) 3232–3258.
doi: 10.1039/d3qm00104k
Q. Yang, Q. Li, Z. Liu, et al., Adv. Mater. 32 (2020) 2001854.
I. Dueramae, M. Okhawilai, P. Kasemsiri, et al., Sci. Rep. 10 (2020) 12587.
doi: 10.1038/s41598-020-69521-x
Y. Zhang, X. Zheng, N. Wang, et al., Chem. Sci. 13 (2022) 14246–14263.
doi: 10.1039/d2sc04945g
P. Heremans, A.K. Tripathi, A. de Jamblinne de Meux, et al., Adv. Mater. 28 (2016) 4266–4282.
doi: 10.1002/adma.201504360
R. Chen, W. Qu, X. Guo, et al., Mater. Horiz. 3 (2016) 487–516.
R.C. Agrawal, G.P. Pandey, J. Phys. D: Appl. Phys. 41 (2008) 223001.
doi: 10.1088/0022-3727/41/22/223001
L. Long, S. Wang, M. Xiao, et al., J. Mater. Chem. A 4 (2016) 10038–10069.
S. Guo, L. Qin, C. Hu, et al., Adv. Energy Mater. 12 (2022) 2200730.
doi: 10.1002/aenm.202200730
K. Wu, J. Huang, J. Yi, et al., Adv. Energy Mater. 10 (2020) 1903977.
doi: 10.1002/aenm.201903977
B. Zhang, L. Qin, Y. Fang, et al., Sci. Bull. 67 (2022) 955–962.
doi: 10.1016/j.scib.2022.01.027
J. Li, P. Yu, S. Zhang, et al., J. Colloid Interface Sci. 600 (2021) 586–593.
Y. Liang, Z. Wu, Y. Wei, et al., Nanomicro. Lett. 14 (2022) 52.
M. Sun, Z. Wang, J. Jiang, et al., Chin. Chem. Lett. 35 (2024) 109393.
T.L. Sun, T. Kurokawa, S. Kuroda, et al., Nat. Mater. 12 (2013) 932–937.
doi: 10.1038/nmat3713
N. Wang, R. Zhou, Z. Zheng, et al., Chem. Eng. J. 425 (2021) e131454.
X. Dong, Y. Wang, Y. Xia, Acc. Chem. Res. 54 (2021) 3883–3894.
doi: 10.1021/acs.accounts.1c00420
F. Cao, B. Wu, T. Li, et al., Nano Res. 15 (2021) 2030–2039.
J. Liang, J. Luo, Q. Sun, et al., Energy Stor. Mater. 21 (2019) 308–334.
L.X. Hou, H. Ju, X.P. Hao, et al., Adv. Mater. 35 (2023) 2300244.
doi: 10.1002/adma.202300244
Y. Jian, S.H. Wang, J. Zhang, et al., Mater. Horiz. 8 (2021) 351–369.
doi: 10.1039/d0mh01029d
K. Xu, Chem. Rev. 114 (2014) 11503–11618.
doi: 10.1021/cr500003w
B. Wang, J. Li, C. Hou, et al., ACS Appl. Mater. Interfaces 12 (2020) 46005–46014.
doi: 10.1021/acsami.0c12313
H. Cha, J. Kim, Y. Lee, et al., Small 14 (2017) 1702989.
A. Chen, C. Zhao, J. Gao, et al., Energy Environ. Sci. 16 (2023) 275–284.
doi: 10.1039/d2ee02931f
X. Chen, W. Li, S. Hu, et al., Nano Energy 98 (2022) 107269.
doi: 10.1016/j.nanoen.2022.107269
X. Xiao, X. Xiao, Y. Zhou, et al., Sci. Adv. 7 (2021) eabl3742.
doi: 10.1126/sciadv.abl3742
Y. Yu, Z. Guo, Y. Zhao, et al., Adv. Mater. 34 (2022) 2107523.
doi: 10.1002/adma.202107523
X. Fan, J. Liu, J. Ding, et al., Front. Chem. 7 (2019) 678.
doi: 10.3389/fchem.2019.00678
Y. Li, C. Zhong, J. Liu, et al., Adv. Mater. 30 (2017) 1703657.
doi: 10.1002/adma.201703657
Y. Li, H. Dai, Chem. Soc. Rev. 43 (2014) 5257–5275.
doi: 10.1039/c4cs00015c
K.N. Grew, W.K.S. Chiu, J. Electrochem. Soc. 157 (2010) B327–B337.
doi: 10.1149/1.3273200
Y. Huang, Z. Li, Z. Pei, et al., Adv. Energy Mater. 8 (2018) 1802288.
Y. Zhou, J. Pan, X. Ou, et al., Adv. Energy Mater. 11 (2021) 2102047.
Z. Pei, Z. Yuan, C. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 4793–4799.
doi: 10.1002/anie.201915836
X. Liu, X. Fan, B. Liu, et al., Adv. Mater. 33 (2021) 2006461.
doi: 10.1002/adma.202006461
X. Hu, L. Fan, G. Qin, et al., J. Power Sources 414 (2019) 201–209.
N. Sun, F. Lu, Y. Yu, et al., ACS Appl. Mater. Interfaces 12 (2020) 11778–11788.
doi: 10.1021/acsami.0c00325
P. Zhang, K. Wang, Y. Zuo, et al., Chem. Eng. J. 451 (2023) 138622.
doi: 10.1016/j.cej.2022.138622
S.W. Song, H. Kim, S. Shin, et al., Energy Stor. Mater. 60 (2023) 102802.
H.W. Kim, J.M. Lim, H. -J. Lee, et al., J. Mater. Chem. A 4 (2016) 3711–3720.
G. Zhang, X. Cai, C. Li, et al., ACS Appl. Polym. Mater. 5 (2023) 3622–3631.
doi: 10.1021/acsapm.3c00270
Y. Yang, T. Wang, Y. Guo, et al., Mater. Today Chem. 29 (2023) 101384.
Q. Liu, R. Liu, C. He, et al., eScience 2 (2022) 453–466.
X. Fan, H. Wang, X. Liu, et al., Adv. Mater. 35 (2022) 2209290.
doi: 10.1002/adma.202209290
A.A.I. Velez, E. Reyes, A. Diaz-Barrios, et al., Gels 7 (2021) 256.
doi: 10.3390/gels7040256
Z. Song, J. Ding, B. Liu, et al., Adv. Mater. 32 (2020) 1908127.
M. Chen, W. Zhou, A. Wang, et al., J. Mater. Chem. A 8 (2020) 6828–6841.
doi: 10.1039/d0ta01553a
F. Chen, D. Zhou, J. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 6568–6571.
doi: 10.1002/anie.201803366
Z. Chen, W. Li, X. Yang, et al., J. Power Sources 523 (2022) 231020.
C. Liu, Y. Tian, Y. An, et al., Chem. Eng. J. 430 (2022) 132748.
X. Fan, J. Liu, Z. Song, et al., Nano Energy 56 (2019) 454–462.
C. Lin, S.S. Shinde, X. Li, et al., ChemSusChem 11 (2018) 3215–3224.
doi: 10.1002/cssc.201801274
S. Huang, F. Wan, S. Bi, et al., Angew. Chem. Int. Ed. 58 (2019) 4313–4317.
doi: 10.1002/anie.201814653
M. Li, B. Liu, X. Fan, et al., ACS Appl. Mater. Interfaces 11 (2019) 28909–28917.
doi: 10.1021/acsami.9b09086
Y. Zeng, X. Zhang, Y. Meng, et al., Adv. Mater. 29 (2017) 1700274.
J. Lyu, Q. Zhou, H. Wang, et al., Adv. Sci. 10 (2023) 2206591.
doi: 10.1002/advs.202206591
F. Santos, J.P. Tafur, J. Abad, et al., J. Electroanal. Chem. 850 (2019) 113380.
doi: 10.1016/j.jelechem.2019.113380
F. Khodaverdi, A. Vaziri, M. Javanbakht, et al., J. Appl. Polym. Sci. 138 (2020) e50088.
Y. Zhao, L. Ma, Y. Zhu, et al., ACS Nano 13 (2019) 7270–7280.
doi: 10.1021/acsnano.9b02986
L. Ma, Y. Zhao, X. Ji, et al., Adv. Energy Mater. 9 (2019) 1900509.
L. Ma, S. Chen, D. Wang, et al., Adv. Energy Mater. 9 (2019) 1803046.
doi: 10.1002/aenm.201803046
H. Dong, J. Li, J. Guo, et al., Adv. Mater. 33 (2021) 2007548.
X. Cheng, J. Pan, Y. Zhao, et al., Adv. Energy Mater. 8 (2017) 1702184.
doi: 10.1002/aenm.201702184
Y. Huang, M. Zhong, F. Shi, et al., Angew. Chem. Int. Ed. 56 (2017) 9141–9145.
doi: 10.1002/anie.201705212
H. Li, Z. Liu, G. Liang, et al., ACS Nano 12 (2018) 3140–3148.
doi: 10.1021/acsnano.7b09003
A. Abbasi, Y. Xu, E. Abouzari-Lotf, et al., Electrochim. Acta 435 (2022) 141365.
P. Zhang, K. Wang, Y. Zuo, et al., ACS Appl. Mater. Interfaces 14 (2022) 49109–49118.
doi: 10.1021/acsami.2c13625
M. Liu, M. Qin, G. Fang, et al., J. Alloys Compd. 959 (2023) 170455.
Y. Quan, M. Chen, W. Zhou, et al., Front Chem. 8 (2020) 603.
doi: 10.3389/fchem.2020.00603
D. Ma, H. He, X. Huang, et al., J. Mater. Sci. : Mater. Electron. 35 (2024) 140.
P. Xu, C. Wang, B. Zhao, et al., J. Power Sources 506 (2021) 230196.
doi: 10.1016/j.jpowsour.2021.230196
J. Huang, X. Chi, Y. Du, et al., ACS Appl. Mater. Interfaces 13 (2021) 4008–4016.
doi: 10.1021/acsami.0c20241
L. Ning, J. Zhou, T. Xue, et al., J. Energy Storage 74 (2023) 109508.
X. Ai, Q. Zhao, Y. Duan, et al., Cell Rep. Phys. Sci. 3 (2022) 101148.
doi: 10.1016/j.xcrp.2022.101148
Y. Sun, H. Ma, X. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2101277.
X. Ji, eScience 1 (2021) 99–107.
K. Zhou, N. Wang, X. Qiu, et al., ChemSusChem 15 (2022) e202201739.
doi: 10.1002/cssc.202201739
X. Jin, L. Song, H. Yang, et al., Energy Environ. Sci. 14 (2021) 3075–3085.
doi: 10.1039/d0ee04066e
X. Jin, L. Song, C. Dai, et al., Energy Stor. Mater. 44 (2022) 517–526.
Q. Wang, Q. Feng, Y. Lei, et al., Nat. Commun. 13 (2022) 3689.
L. Han, K. Liu, M. Wang, et al., Adv. Funct. Mater. 28 (2017) 1704195.
R. Wang, M. Yao, S. Huang, et al., Sci. China Mater. 65 (2022) 2189–2196.
doi: 10.1007/s40843-021-1924-2
T. Wei, Y. Ren, Z. Li, et al., Chem. Eng. J. 434 (2022) 134646.
Y. Shi, R. Wang, S. Bi, et al., Adv. Funct. Mater. 33 (2023) 2214546.
M. Jiao, L. Dai, H.R. Ren, et al., Angew. Chem. Int. Ed. 62 (2023) e202301114.
doi: 10.1002/anie.202301114
L. Yan, Y. Qi, X. Dong, et al., eScience 1 (2021) 212–218.
Z. Wang, H. Li, Z. Tang, et al., Adv. Funct. Mater. 28 (2018) 1804560.
F. Mo, M. Cui, N. He, et al., Mater. Res. Lett. 10 (2022) 501–520.
doi: 10.1080/21663831.2022.2059412
Z. Song, X. Liu, J. Ding, et al., ACS Appl. Mater. Interfaces 14 (2022) 49801–49810.
doi: 10.1021/acsami.2c14470
Y. Wei, M. Wang, N. Xu, et al., ACS Appl. Mater. Interfaces 10 (2018) 29593–29598.
doi: 10.1021/acsami.8b09545
K. Tang, J. Fu, M. Wu, et al., Small Methods 6 (2021) 2101276.
X. Jia, J. Ma, L. Zhang, et al., J. Electrochem. Soc. 169 (2022) 120526.
doi: 10.1149/1945-7111/acadaf
G. Zhang, X. Cai, C. Li, et al., Int. J. Biol. Macromol. 221 (2022) 446–455.
L. Sartore, S. Pandini, F. Baldi, et al., J. Appl. Polym. Sci. 134 (2017) 45655.
D. Wang, Z. Li, L. Yang, et al., Chem. Eng. J. 454 (2023) 140090.
X. Tong, G. Sheng, D. Yang, et al., Mater. Horiz. 9 (2022) 383–392.
doi: 10.1039/d1mh01081f
W. Liu, Y. Zhang, X. Zheng, et al., Energy Fuels 37 (2023) 16097–16104.
doi: 10.1021/acs.energyfuels.3c02570
Y. Zhang, Y. Chen, M. Alfred, et al., Compos. Part B Eng. 224 (2021) 109228.
Y. Chen, S. He, Q. Rong, Mater. Today Chem. 33 (2023) 101726.
P.C. Selvin, P. Perumal, S. Selvasekarapandian, et al., Ionics (Kiel) 24 (2018) 3535–3542.
S. Rudhziah, A. Ahmad, I. Ahmad, et al., Electrochim. Acta 175 (2015) 162–168.
S. Rudhziah, M.S.A. Rani, A. Ahmad, et al., Ind. Crops Prod. 72 (2015) 133–141.
Y. Huang, J. Liu, J. Zhang, et al., RSC Adv. 9 (2019) 16313–16319.
doi: 10.1039/c9ra01120j
D. Mudgil, S. Barak, B.S. Khatkar, Int. J. Biol. Macromol. 50 (2012) 1035–1039.
S. Kundu, M.F. Abdullah, A. Das, et al., RSC Adv. 6 (2016) 106563–106571.
Q. Li, H. Yang, L. Xie, et al., Chem. Commun. 52 (2016) 13479–13482.
Y. Huang, J. Zhang, J. Liu, et al., Mater. Today Energy 14 (2019) 100349.
S. Ghorai, A. Sarkar, M. Raoufi, et al., ACS Appl. Mater. Interfaces 6 (2014) 4766–4777.
doi: 10.1021/am4055657
S. Zhang, N. Yu, S. Zeng, et al., J. Mater. Chem. A 6 (2018) 12237–12243.
doi: 10.1039/c8ta04298e
Y. Mao, H. Duan, B. Xu, et al., Energy Environ. Sci. 5 (2012) 7950–7955.
doi: 10.1039/c2ee21817h
H. Li, C. Han, Y. Huang, et al., Energy Environ. Sci. 11 (2018) 941–951.
doi: 10.1039/c7ee03232c
D. Pelc, S. Marion, M. Požek, et al., Soft Matter 10 (2014) 348–356.
F. Wan, L. Zhang, X. Dai, et al., Nat. Commun. 9 (2018) 1656.
Q. Han, X. Chi, S. Zhang, et al., J. Mater. Chem. A 6 (2018) 23046–23054.
doi: 10.1039/c8ta08314b
W. Yang, W. Yang, J. Zeng, et al., Prog. Mater. Sci. 144 (2024) 101264.
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
Xiaonan LI , Hui HAN , Yihan ZHANG , Jing XIONG , Tingting GUO , Juanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Qian Wang , Dong Yang , Wenxing Xin , Yongqi Wang , Wenchang Han , Wengxiang Yan , Chunman Yang , Fei Wang , Yiyong Zhang , Ziyi Zhu , Xue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669
Mengxiao Yang , Haicheng Huang , Shiyi Shen , Xinxin Liu , Mengyu Liu , Jiahua Guo , Fenghui Yang , Baoli Zha , Jiansheng Wu , Sheng Li , Fengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027