Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones

Guang Xu Cuiju Zhu Xiang Li Kexin Zhu Hao Xu

Citation:  Guang Xu, Cuiju Zhu, Xiang Li, Kexin Zhu, Hao Xu. Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones[J]. Chinese Chemical Letters, 2025, 36(4): 110114. doi: 10.1016/j.cclet.2024.110114 shu

Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones

English

  • Spiropyrazolones and heterocyclic-fused analogues are important molecular scaffolds in natural products, biologically active molecules, and pharmaceuticals (Scheme 1a) [1-4]. Consequently, considerable efforts have been devoted to the asymmetric synthesis of five-membered spiropyrazolones. For example, Lu's group developed the first phosphine-catalyzed enantioselective [4 + 1] annulation of substituted allenoates for the formation of enriched 4-spiro-5-pyrazolones [5]. Whereas Enders and co-workers reported an organocatalytic Michael addition/Ag-catalyzed Conia-ene reaction between alkyne-tethered nitroalkenes and pyrazolones [6]. The same group also described an asymmetric NHC-catalyzed [3 + 2] annulation of cinnamaldehyde derivatives with pyrazolones [7]. Particularly, You's group pioneered the asymmetric rhodium-catalyzed C(sp2)–H functionalization of 4-aryl-5-pyrazolones and subsequent annulation with alkynes for the asymmetric synthesis of highly enantioenriched five-membered-ring 4-spiro-5-pyrazolones (Scheme 1b) [8].

    Scheme 1

    Scheme 1.  Selected bioactive spiropyrazolones and general outline of the strategy in asymmetric synthesis of spiropyrazolones.

    In recent years, catalytic asymmetric [4 + 1] annulation have been developed for the synthesis of five-membered rings [9-11]. Widely utilized C4 synthons, including allenyl acetates [12-15], 1,3-dienes [16-21], 1,4-diones [22-24], and cyclobutanols [25-30], have played integral roles in asymmetric [4 + 1] cyclization processes. Metal-allenylidene intermediates, which are more reactive, and widely employed in nucleophilic substitution reactions [31-50] and annulation reactions [51-56]. With C=C bond installed in propargylic esters, which offered numerous opportunities for chemists to explore new activation modes and create new chiral chemicals. In 2012, Haak's group reported the ruthenium-catalyzed [4 + 1] annulation of cyclic 1,3-dicarbonyl compounds with 1-vinyl propargyl alcohols, wherein the first metal-vinylallenylidene intermediates was proposed [57-59]. In 2022, Fang's group successfully synthesized a series of racemic yne-allylic substituted products using yne–allylic esters as a C4 synthon which [60]. Recently, our group successfully achieved copper-catalyzed asymmetric [4 + 1] annulation of yne–allylic esters with 1,3-dicarbonyl compounds for chiral spirocycles by challenging remote stereocontrol [61]. Yne-allylic esters regarded as a novel C4 synthon for asymmetric copper-catalyzed remote transformations [62-69]. On the basis of our interest in asymmetric copper catalysis [70-76], we envisaged the remote asymmetric annulation of yne–allylic acetates with pyrazolones for highly enantioenriched spiropyrazolones using earth-abundant copper catalyst.

    Our investigations were implemented with yne–allylic acetate 1a and 1,3-diphenyl-pyrazolone 2a (Table 1). The investigation revealed that the Ph-PyBox ligand L1 delivered the desired product 3a in 99% yield, albeit with moderate enantiocontrol in the presence of a Cu(Ⅰ) catalyst with DIPEA as the base in MeOH (entry 1). The ee value of 3a with less steric hindrance Me-PyBox ligand L2 could be enhanced to 92%/91% ee with 54:46 dr (entry 2). Further investigation of the C4-substitution effect of the pyridine moieties in the Me-PyBox ligands indicated that both enantioselectivity and diastereoselectivity were affected. With the ligand L3 gave the highest enantioselectivity (entries 3–6). Screening different bases showed that Et3N provided promising results in terms of ee and dr values (entries 7–9). After further optimization of reaction parameters, such as reaction temperature and time, we found that the ee and dr values of 3a could be enhanced to 96%/97% and 72:28, respectively, at –10 ℃ (entries 10–12).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With the optimal conditions in hand, we then probed the scope of yne–allylic acetates for this asymmetric [4 + 1] annulation reaction (Scheme 2). A series of aryl yne–allylic acetates with electron-donating or -withdrawing substituents reacted smoothly, affording spiropyrazolones in excellent yields with good enantioselectivities and moderated diastereoselectivities. Halogens and cyano group at the para-position in yne–allylic acetates were compatible, giving the spirocycles products 3b3d in good yields with excellent ee values. The reaction tolerated meta- and ortho-substituted aryl yne–allylic acetates (3e3h) very well. Even yne–allylic acetetes adjacent to the more sterically bulky 2,6-dimethylphenyl group reacted smoothly, resulting in the desired product 3i with an excellent yield, albeit with a decreased ee value. However, the less reactive aliphatic yne–allylic acetates led to diminished yield. The Me-substituted yne–allylic acetate provided annulation product 3j in 99%/99% ee values. However, the ee values of the more sterically bulky t-Bu-substituted substrate decreased to 82%/61% (3k). Remarkably, thiophenyl-substituted yne–allylic ester delivered the corresponding product 3l with good yield and excellent ee values. Subsequently, various pyrazolones were explored in the asymmetric [4 + 1] annulation (Scheme 3). Different aryl-substituents at the 3-position of the pyrazolones, delivered the desired spiropyrazolones 3m, 3n, and 3o in good yields with excellent ee values. Notably, the bulky isopropyl at the 3-position of the pyrazolones also showed good compatibility, yielding the desired annulation product 3p in excellent yield, albeit with a decrease in ee. Various N-aryl groups of the pyrazolones were well-tolerated, giving 3q3u in good yields and moderate enantioselectivity. Importantly, N-alkyl group of the pyrazolones also reacted well, albeit with low dr values (3v, 3w). Notably, two diastereomers of syn-3w and anti-3w can be isolated by column chromatography. We are delighted to observe that our developed method enables the isolation of some products. Finally, the absolute configurations of product syn-3w (CCDC: 2306695) and anti-3w (CCDC: 2306696) were unambiguously assigned by X-ray diffraction analysis (Scheme 4).

    Scheme 2

    Scheme 2.  Scope of yne–allylic esters. a Separate the diastereomers: syn-3j = 45%, anti-3j = 22%.

    Scheme 3

    Scheme 3.  Scope of pyrazolones. a Separate the diastereomers: syn-3w = 43%, anti-3w = 41%.

    Scheme 4

    Scheme 4.  X-ray diffraction analysis syn-3w and anti-3w.

    To demonstrate the synthetic utility of this method, the obtained spiropyrazolones were subjected to a selection of derivatizations (Scheme 5a). The amide group in 3a was successfully reduced with DIBAL-H, affording the pyrazoline derivative 4 in 85% yield with 71:29 dr and 96%/96% ee. The Suzuki coupling of 3o with boronic acid 5 resulted in the formation of chiral-preserving coupling product 6.

    Scheme 5

    Scheme 5.  Product transformations and proposed mechanism.

    The reaction of methyl-substituted pyrazolones 7 gave rise to the γ-substituted yne–allylic product 8 in 69% yield with 60% ee under the standard conditions. The result revealed that the reaction probably went through a stepwise process and the enantio–determining accompanied in the first nucleophilic substitution step (Scheme 5b).

    Based on previous reports, a putative catalytic cycle for the reaction was proposed (Scheme 5c). Initially, the reaction of the chiral copper catalyst with the terminal alkyne 1a afforded a catalytically active copper acetylide species , which then underwent the elimination of an acetyl group to form the copper- allenylidene intermediate along with its resonance form acetylide intermediate Ⅱ′. Subsequently, an in situ-formed enolate anion 2a′ underwent nucleophilic addition at the ε site of the copper-allenylidene species, genernating the intermediate . Next, the protodemetalation of intermediate delivered the intermediate . Subsequently, the Conia-ene reaction of intermediate was occurred to deliver the intermediate . Finally, intermediate underwent protodemetalation to provide the desired product 3a and regenernated the chiral copper catalyst for the next catalytic cycle.

    In summary, we have described a copper-catalyzed asymmetric [4 + 1] annulation of yne–allylic esters with pyrozalones by remote stereocontrol in high yields (up to 99%) with excellent enantioselectivities (up to 99%/99% ee) and moderate diastereoselectivities (up to 82:18 dr). This method enables the transformation of yne–allylic esters into highly enantioenriched spiropyrazolones containing all-carbon quaternary sterogenic centers.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Guang Xu: Writing – original draft, Data curation, Conceptualization. Cuiju Zhu: Writing – review & editing, Supervision, Funding acquisition. Xiang Li: Investigation. Kexin Zhu: Investigation. Hao Xu: Writing – review & editing, Supervision, Resources, Funding acquisition.

    The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21801087 and 22201089).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2024.110114.


    1. [1]

      E. Amata, N.D. Bland, R.K. Campbell, M.P. Pollastri, Tetrahedron Lett. 56 (2015) 2832–2835. doi: 10.1016/j.tetlet.2015.04.061

    2. [2]

      H. Zou, Z.L. Wang, Y. Cao, G. Huang, Chin. Chem. Lett. 29 (2018) 1355–1358. doi: 10.1016/j.cclet.2017.10.034

    3. [3]

      W. Luo, B. Shao, J. Li, et al., Org. Chem. Front. 7 (2020) 1016–1021. doi: 10.1039/d0qo00140f

    4. [4]

      S. Zhang, G. Xu, H. Yan, et al., Chin. Chem. Lett. 33 (2022) 5128–5131. doi: 10.1016/j.cclet.2022.04.006

    5. [5]

      X. Han, W. Yao, T. Wang, et al., Angew. Chem. Int. Ed. 53 (2014) 5643–5647. doi: 10.1002/anie.201311214

    6. [6]

      D. Hack, A.B. Dürr, K. Deckers, et al., Angew. Chem. Int. Ed. 55 (2016) 1797–1800. doi: 10.1002/anie.201510602

    7. [7]

      L. Wang, S. Li, P. Chauhan, et al., Chem. Eur. J. 22 (2016) 5123–5127. doi: 10.1002/chem.201600515

    8. [8]

      J. Zheng, S.B. Wang, C. Zheng, S.L. You, Angew. Chem. Int. Ed. 56 (2017) 4540–4544. doi: 10.1002/anie.201700021

    9. [9]

      J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Rev. 115 (2015) 5301–5365. doi: 10.1021/cr5006974

    10. [10]

      C. Zhu, Y. Ding, L.W. Ye, Org. Biomol. Chem. 13 (2015) 2530–2536. doi: 10.1039/C4OB02556C

    11. [11]

      B. Xiang, Y. Wang, C. Xiao, F. He, Y. Huang, Chin. Chem. Lett. 35 (2024) 108777. doi: 10.1016/j.cclet.2023.108777

    12. [12]

      D.T. Ziegler, L. Riesgo, T. Ikeda, Y. Fujiwara, G.C. Fu, Angew. Chem. Int. Ed. 53 (2014) 13183–13187. doi: 10.1002/anie.201405854

    13. [13]

      Q. Zhang, L. Yang, X. Tong, J. Am. Chem. Soc. 132 (2010) 2550–2551. doi: 10.1021/ja100432m

    14. [14]

      S. Kramer, G.C. Fu, J. Am. Chem. Soc. 137 (2015) 3803–3806. doi: 10.1021/jacs.5b01944

    15. [15]

      L. Li, P. Luo, Y. Deng, Z. Shao, Angew. Chem. Int. Ed. 58 (2019) 4710–4713. doi: 10.1002/anie.201901511

    16. [16]

      X.N. Zhang, H.P. Deng, L. Huang, Y. Wei, M. Shi, Chem. Commun. 48 (2012) 8664–8666. doi: 10.1039/c2cc34619b

    17. [17]

      X.N. Zhang, G.Q. Chen, X.Y. Tang, Y. Wei, M. Shi, Angew. Chem. Int. Ed. 53 (2014) 10768–10773. doi: 10.1002/anie.201406100

    18. [18]

      Y.Y. Zhou, C. Uyeda, Science 363 (2019) 857–862. doi: 10.1126/science.aau0364

    19. [19]

      M.J. Behlen, C. Uyeda, J. Am. Chem. Soc. 142 (2020) 17294–17300. doi: 10.1021/jacs.0c08262

    20. [20]

      Z. Zhang, F. Xiao, H.M. Wu, X.Q. Dong, C.J. Wang, Org. Lett. 22 (2020) 569–574. doi: 10.1021/acs.orglett.9b04341

    21. [21]

      Q.Y. Liao, C. Ma, Y.C. Wang, et al., Chin. Chem. Lett. 34 (2023) 108371. doi: 10.1016/j.cclet.2023.108371

    22. [22]

      L. Zhang, J. Zhang, J. Ma, D.J. Cheng, B. Tan, J. Am. Chem. Soc. 139 (2017) 1714–1717. doi: 10.1021/jacs.6b09634

    23. [23]

      K.W. Chen, Z.H. Chen, S. Yang, et al., Angew. Chem. Int. Ed. 61 (2022) e202116829. doi: 10.1002/anie.202116829

    24. [24]

      Y. Gao, L.Y. Wang, T. Zhang, B.M. Yang, Y. Zhao, Angew. Chem. Int. Ed. 61 (2022) e202200371. doi: 10.1002/anie.202200371

    25. [25]

      S. Matsumura, Y. Maeda, T. Nishimura, S. Uemura, J. Am. Chem. Soc. 125 (2003) 8862–8869. doi: 10.1021/ja035293l

    26. [26]

      M. Shigeno, T. Yamamoto, M. Murakami, Chem. Eur. J. 15 (2009) 12929–12931. doi: 10.1002/chem.200902593

    27. [27]

      N. Ishida, S. Sawano, Y. Masuda, M. Murakami, J. Am. Chem. Soc. 134 (2012) 17502–17504. doi: 10.1021/ja309013a

    28. [28]

      N. Ishida, S. Sawano, M. Murakami, Nat. Commun. 5 (2014) 3111. doi: 10.1038/ncomms4111

    29. [29]

      Y. Xia, Z. Liu, Z. Liu, et al., J. Am. Chem. Soc. 136 (2014) 3013–3015. doi: 10.1021/ja500118w

    30. [30]

      A. Yada, S. Fujita, M. Murakami, J. Am. Chem. Soc. 136 (2014) 7217–7220. doi: 10.1021/ja502229c

    31. [31]

      C. Zhang, X.H. Hu, Y.H. Wang, et al., J. Am. Chem. Soc. 134 (2012) 9585–9588. doi: 10.1021/ja303129s

    32. [32]

      L. Shao, Y.H. Wang, D.Y. Zhang, J. Xu, X.P. Hu, Angew. Chem. Int. Ed. 55 (2016) 5014–5018. doi: 10.1002/anie.201510793

    33. [33]

      X. Gao, R. Cheng, Y.L. Xiao, X.L. Wan, X. Zhang, Chem 5 (2019) 2987–2999. doi: 10.1016/j.chempr.2019.09.012

    34. [34]

      R.Z. Li, D.Q. Liu, D. Niu, Nat. Catal. 3 (2020) 672–680. doi: 10.1038/s41929-020-0462-9

    35. [35]

      L. Peng, Z. He, X. Xu, C. Guo, Angew. Chem. Int. Ed. 59 (2020) 14270–14274. doi: 10.1002/anie.202005019

    36. [36]

      S.J. Li, J. Huang, J.Y. He, et al., RSC Adv. 10 (2020) 38478–38483. doi: 10.1039/d0ra07698h

    37. [37]

      J. Huang, H.H. Kong, S.J. Li, et al., Chem. Commun. 57 (2021) 4674–4677. doi: 10.1039/d1cc00663k

    38. [38]

      J.T. Xia, L. Li, X.P. Hu, ACS Catal. 11 (2021) 11843–11848. doi: 10.1021/acscatal.1c03421

    39. [39]

      W. Guo, L. Zuo, M. Cui, B. Yan, S. Ni, J. Am. Chem. Soc. 143 (2021) 7629–7634. doi: 10.1021/jacs.1c03182

    40. [40]

      Z. Li, D. Li, H. Xiang, et al., Chin. Chem. Lett. 33 (2022) 867–870. doi: 10.1016/j.cclet.2021.08.009

    41. [41]

      X. Pu, Q.D. Dang, L. Yang, X. Zhang, D. Niu, Nat. Commun. 13 (2022) 2457. doi: 10.1038/s41467-022-29986-y

    42. [42]

      H.D. Qian, Z.H. Li, S. Deng, et al., J. Am. Chem. Soc. 144 (2022) 15779–15785. doi: 10.1021/jacs.2c06560

    43. [43]

      R.Q. Wang, C. Shen, X. Cheng, X.Q. Dong, C.J. Wang, Chem. Commun. 58 (2022) 8552–8555. doi: 10.1039/d2cc01695h

    44. [44]

      T. Liu, S. Ni, W. Guo, Chem. Sci. 13 (2022) 6806–6812. doi: 10.1039/d2sc02318k

    45. [45]

      W. Dong, Z. Zhao, C.Z. Gu, et al., J. Am. Chem. Soc. 145 (2023) 27539–27554. doi: 10.1021/jacs.3c09155

    46. [46]

      G. Tian, M. Ji, F. Wu, et al., Org. Lett. 25 (2023) 4666–4671. doi: 10.1021/acs.orglett.3c01521

    47. [47]

      C. Gui, Y. Peng, Y. Zhou, et al., ACS Catal. 13 (2023) 13735–13742. doi: 10.1021/acscatal.3c03814

    48. [48]

      T. Wang, Y. You, Z.H. Wang, et al., Org. Lett. 25 (2023) 1274–1279. doi: 10.1021/acs.orglett.3c00075

    49. [49]

      Z.Q. Geng, C. Zhao, H.D. Qian, et al., Org. Lett. 25 (2023) 4504–4509. doi: 10.1021/acs.orglett.3c01524

    50. [50]

      Q. Cai, H. Rao, S.J. Li, et al., Chem 10 (2024) 265–282. doi: 10.1016/j.chempr.2023.09.006

    51. [51]

      D.Y. Zhang, L. Shao, J. Xu, X.P. Hu, ACS Catal. 5 (2015) 5026–5030. doi: 10.1021/acscatal.5b01283

    52. [52]

      T.R. Li, B.Y. Cheng, Y.N. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 12422–12426. doi: 10.1002/anie.201605900

    53. [53]

      X. Lu, L. Ge, C. Cheng, et al., Chem. Eur. J. 23 (2017) 7689–7693. doi: 10.1002/chem.201701741

    54. [54]

      H. Chen, X. Lu, X. Xia, et al., Org. Lett. 20 (2018) 1760–1763. doi: 10.1021/acs.orglett.8b00253

    55. [55]

      Z.J. Zhang, L. Zhang, R.L. Geng, et al., Angew. Chem. Int. Ed. 58 (2019) 12190–12194. doi: 10.1002/anie.201907188

    56. [56]

      B.C. Wang, T. Fan, F.Y. Xiong, et al., J. Am. Chem. Soc. 144 (2022) 19932–19941. doi: 10.1021/jacs.2c08090

    57. [57]

      A. Jonek, S. Berger, E. Haak, Chem. Eur. J. 18 (2012) 15504–15511. doi: 10.1002/chem.201202414

    58. [58]

      N. Thies, M. Gerlach, E. Haak, Eur. J. Org. Chem. 2013 (2013) 7354–7365. doi: 10.1002/ejoc.201300803

    59. [59]

      N. Thies, E. Haak, Angew. Chem. Int. Ed. 54 (2015) 4097–4101. doi: 10.1002/anie.201412207

    60. [60]

      S. Niu, Y. Luo, C. Xu, et al., ACS Catal. 12 (2022) 6840–6850. doi: 10.1021/acscatal.2c00911

    61. [61]

      H.H. Kong, C. Zhu, S. Deng, et al., J. Am. Chem. Soc. 144 (2022) 21347–21355. doi: 10.1021/jacs.2c09572

    62. [62]

      M.D. Li, Z.H. Wang, H. Zhu, et al., Angew. Chem. Int. Ed. 62 (2023) e202313911. doi: 10.1002/anie.202313911

    63. [63]

      S.Y. Luo, G.Q. Lin; , Z.T. He, Org. Chem. Front. 11 (2024) 690–695. doi: 10.1039/d3qo01749d

    64. [64]

      H.Y. Lu, Y.W. Chen, W.C. Zhao, et al., Nat. Synth. 2 (2023) 37–48.

    65. [65]

      C. Xu, Y. Luo, S. Niu, et al., Green Synth. Catal. 5 (2024) 303–309. doi: 10.1016/j.gresc.2023.10.003

    66. [66]

      H. Zhu, L. Xu, B. Zhu, et al., Org. Lett. 25 (2023) 9213–9218. doi: 10.1021/acs.orglett.3c03871

    67. [67]

      Y.Z. Sun, Z.Y. Ren, Y.X. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202314517. doi: 10.1002/anie.202314517

    68. [68]

      D. Luo, S. Niu, F. Gong, et al., ACS Catal. 14 (2024) 2746–2757. doi: 10.1021/acscatal.3c06146

    69. [69]

      H.D. Qian, X. Li, T. Yin, et al., Sci. China Chem. 67 (2024) 1175–1180. doi: 10.1007/s11426-023-1922-5

    70. [70]

      J. Song, Z.J. Zhang, L.Z. Gong, Angew. Chem. Int. Ed. 56 (2017) 5212–5216. doi: 10.1002/anie.201700105

    71. [71]

      J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 21 (2019) 4067–4071. doi: 10.1021/acs.orglett.9b01246

    72. [72]

      Z.L. Li, G.C. Fang, Q.S. Gu, X.Y. Liu, Chem. Soc. Rev. 49 (2020) 32–48. doi: 10.1039/c9cs00681h

    73. [73]

      X. Chang, Y. Yang, C. Shen, et al., J. Am. Chem. Soc. 143 (2021) 3519–3535. doi: 10.1021/jacs.0c12911

    74. [74]

      Y.H. Wen, Z.J. Zhang, S. Li, J. Song, L.Z. Gong, Nat. Commun. 13 (2022) 1344. doi: 10.1038/s41467-022-29059-0

    75. [75]

      Z. Zhang, P. Chen, G. Liu, Chem. Soc. Rev. 51 (2022) 1640–1658. doi: 10.1039/d1cs00727k

    76. [76]

      Z. Yu, Z. Li, C. Yang, Q. Gu, X. Liu, Acta Chim. Sin. 81 (2023) 955–966. doi: 10.6023/a23040161

  • Scheme 1  Selected bioactive spiropyrazolones and general outline of the strategy in asymmetric synthesis of spiropyrazolones.

    Scheme 2  Scope of yne–allylic esters. a Separate the diastereomers: syn-3j = 45%, anti-3j = 22%.

    Scheme 3  Scope of pyrazolones. a Separate the diastereomers: syn-3w = 43%, anti-3w = 41%.

    Scheme 4  X-ray diffraction analysis syn-3w and anti-3w.

    Scheme 5  Product transformations and proposed mechanism.

    Table 1.  Optimization of reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  75
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2025-04-15
  • 收稿日期:  2024-02-12
  • 接受日期:  2024-06-12
  • 修回日期:  2024-06-03
  • 网络出版日期:  2024-06-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章