Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones
-
* Corresponding author.
E-mail address: hao.xu@ccnu.edu.cn (H. Xu).
1 These authors contributed equally to this work.
Citation:
Guang Xu, Cuiju Zhu, Xiang Li, Kexin Zhu, Hao Xu. Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones[J]. Chinese Chemical Letters,
;2025, 36(4): 110114.
doi:
10.1016/j.cclet.2024.110114
E. Amata, N.D. Bland, R.K. Campbell, M.P. Pollastri, Tetrahedron Lett. 56 (2015) 2832–2835.
doi: 10.1016/j.tetlet.2015.04.061
H. Zou, Z.L. Wang, Y. Cao, G. Huang, Chin. Chem. Lett. 29 (2018) 1355–1358.
doi: 10.1016/j.cclet.2017.10.034
W. Luo, B. Shao, J. Li, et al., Org. Chem. Front. 7 (2020) 1016–1021.
doi: 10.1039/d0qo00140f
S. Zhang, G. Xu, H. Yan, et al., Chin. Chem. Lett. 33 (2022) 5128–5131.
doi: 10.1016/j.cclet.2022.04.006
X. Han, W. Yao, T. Wang, et al., Angew. Chem. Int. Ed. 53 (2014) 5643–5647.
doi: 10.1002/anie.201311214
D. Hack, A.B. Dürr, K. Deckers, et al., Angew. Chem. Int. Ed. 55 (2016) 1797–1800.
doi: 10.1002/anie.201510602
L. Wang, S. Li, P. Chauhan, et al., Chem. Eur. J. 22 (2016) 5123–5127.
doi: 10.1002/chem.201600515
J. Zheng, S.B. Wang, C. Zheng, S.L. You, Angew. Chem. Int. Ed. 56 (2017) 4540–4544.
doi: 10.1002/anie.201700021
J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Rev. 115 (2015) 5301–5365.
doi: 10.1021/cr5006974
C. Zhu, Y. Ding, L.W. Ye, Org. Biomol. Chem. 13 (2015) 2530–2536.
doi: 10.1039/C4OB02556C
B. Xiang, Y. Wang, C. Xiao, F. He, Y. Huang, Chin. Chem. Lett. 35 (2024) 108777.
doi: 10.1016/j.cclet.2023.108777
D.T. Ziegler, L. Riesgo, T. Ikeda, Y. Fujiwara, G.C. Fu, Angew. Chem. Int. Ed. 53 (2014) 13183–13187.
doi: 10.1002/anie.201405854
Q. Zhang, L. Yang, X. Tong, J. Am. Chem. Soc. 132 (2010) 2550–2551.
doi: 10.1021/ja100432m
S. Kramer, G.C. Fu, J. Am. Chem. Soc. 137 (2015) 3803–3806.
doi: 10.1021/jacs.5b01944
L. Li, P. Luo, Y. Deng, Z. Shao, Angew. Chem. Int. Ed. 58 (2019) 4710–4713.
doi: 10.1002/anie.201901511
X.N. Zhang, H.P. Deng, L. Huang, Y. Wei, M. Shi, Chem. Commun. 48 (2012) 8664–8666.
doi: 10.1039/c2cc34619b
X.N. Zhang, G.Q. Chen, X.Y. Tang, Y. Wei, M. Shi, Angew. Chem. Int. Ed. 53 (2014) 10768–10773.
doi: 10.1002/anie.201406100
Y.Y. Zhou, C. Uyeda, Science 363 (2019) 857–862.
doi: 10.1126/science.aau0364
M.J. Behlen, C. Uyeda, J. Am. Chem. Soc. 142 (2020) 17294–17300.
doi: 10.1021/jacs.0c08262
Z. Zhang, F. Xiao, H.M. Wu, X.Q. Dong, C.J. Wang, Org. Lett. 22 (2020) 569–574.
doi: 10.1021/acs.orglett.9b04341
Q.Y. Liao, C. Ma, Y.C. Wang, et al., Chin. Chem. Lett. 34 (2023) 108371.
doi: 10.1016/j.cclet.2023.108371
L. Zhang, J. Zhang, J. Ma, D.J. Cheng, B. Tan, J. Am. Chem. Soc. 139 (2017) 1714–1717.
doi: 10.1021/jacs.6b09634
K.W. Chen, Z.H. Chen, S. Yang, et al., Angew. Chem. Int. Ed. 61 (2022) e202116829.
doi: 10.1002/anie.202116829
Y. Gao, L.Y. Wang, T. Zhang, B.M. Yang, Y. Zhao, Angew. Chem. Int. Ed. 61 (2022) e202200371.
doi: 10.1002/anie.202200371
S. Matsumura, Y. Maeda, T. Nishimura, S. Uemura, J. Am. Chem. Soc. 125 (2003) 8862–8869.
doi: 10.1021/ja035293l
M. Shigeno, T. Yamamoto, M. Murakami, Chem. Eur. J. 15 (2009) 12929–12931.
doi: 10.1002/chem.200902593
N. Ishida, S. Sawano, Y. Masuda, M. Murakami, J. Am. Chem. Soc. 134 (2012) 17502–17504.
doi: 10.1021/ja309013a
N. Ishida, S. Sawano, M. Murakami, Nat. Commun. 5 (2014) 3111.
doi: 10.1038/ncomms4111
Y. Xia, Z. Liu, Z. Liu, et al., J. Am. Chem. Soc. 136 (2014) 3013–3015.
doi: 10.1021/ja500118w
A. Yada, S. Fujita, M. Murakami, J. Am. Chem. Soc. 136 (2014) 7217–7220.
doi: 10.1021/ja502229c
C. Zhang, X.H. Hu, Y.H. Wang, et al., J. Am. Chem. Soc. 134 (2012) 9585–9588.
doi: 10.1021/ja303129s
L. Shao, Y.H. Wang, D.Y. Zhang, J. Xu, X.P. Hu, Angew. Chem. Int. Ed. 55 (2016) 5014–5018.
doi: 10.1002/anie.201510793
X. Gao, R. Cheng, Y.L. Xiao, X.L. Wan, X. Zhang, Chem 5 (2019) 2987–2999.
doi: 10.1016/j.chempr.2019.09.012
R.Z. Li, D.Q. Liu, D. Niu, Nat. Catal. 3 (2020) 672–680.
doi: 10.1038/s41929-020-0462-9
L. Peng, Z. He, X. Xu, C. Guo, Angew. Chem. Int. Ed. 59 (2020) 14270–14274.
doi: 10.1002/anie.202005019
S.J. Li, J. Huang, J.Y. He, et al., RSC Adv. 10 (2020) 38478–38483.
doi: 10.1039/d0ra07698h
J. Huang, H.H. Kong, S.J. Li, et al., Chem. Commun. 57 (2021) 4674–4677.
doi: 10.1039/d1cc00663k
J.T. Xia, L. Li, X.P. Hu, ACS Catal. 11 (2021) 11843–11848.
doi: 10.1021/acscatal.1c03421
W. Guo, L. Zuo, M. Cui, B. Yan, S. Ni, J. Am. Chem. Soc. 143 (2021) 7629–7634.
doi: 10.1021/jacs.1c03182
Z. Li, D. Li, H. Xiang, et al., Chin. Chem. Lett. 33 (2022) 867–870.
doi: 10.1016/j.cclet.2021.08.009
X. Pu, Q.D. Dang, L. Yang, X. Zhang, D. Niu, Nat. Commun. 13 (2022) 2457.
doi: 10.1038/s41467-022-29986-y
H.D. Qian, Z.H. Li, S. Deng, et al., J. Am. Chem. Soc. 144 (2022) 15779–15785.
doi: 10.1021/jacs.2c06560
R.Q. Wang, C. Shen, X. Cheng, X.Q. Dong, C.J. Wang, Chem. Commun. 58 (2022) 8552–8555.
doi: 10.1039/d2cc01695h
T. Liu, S. Ni, W. Guo, Chem. Sci. 13 (2022) 6806–6812.
doi: 10.1039/d2sc02318k
W. Dong, Z. Zhao, C.Z. Gu, et al., J. Am. Chem. Soc. 145 (2023) 27539–27554.
doi: 10.1021/jacs.3c09155
G. Tian, M. Ji, F. Wu, et al., Org. Lett. 25 (2023) 4666–4671.
doi: 10.1021/acs.orglett.3c01521
C. Gui, Y. Peng, Y. Zhou, et al., ACS Catal. 13 (2023) 13735–13742.
doi: 10.1021/acscatal.3c03814
T. Wang, Y. You, Z.H. Wang, et al., Org. Lett. 25 (2023) 1274–1279.
doi: 10.1021/acs.orglett.3c00075
Z.Q. Geng, C. Zhao, H.D. Qian, et al., Org. Lett. 25 (2023) 4504–4509.
doi: 10.1021/acs.orglett.3c01524
Q. Cai, H. Rao, S.J. Li, et al., Chem 10 (2024) 265–282.
doi: 10.1016/j.chempr.2023.09.006
D.Y. Zhang, L. Shao, J. Xu, X.P. Hu, ACS Catal. 5 (2015) 5026–5030.
doi: 10.1021/acscatal.5b01283
T.R. Li, B.Y. Cheng, Y.N. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 12422–12426.
doi: 10.1002/anie.201605900
X. Lu, L. Ge, C. Cheng, et al., Chem. Eur. J. 23 (2017) 7689–7693.
doi: 10.1002/chem.201701741
H. Chen, X. Lu, X. Xia, et al., Org. Lett. 20 (2018) 1760–1763.
doi: 10.1021/acs.orglett.8b00253
Z.J. Zhang, L. Zhang, R.L. Geng, et al., Angew. Chem. Int. Ed. 58 (2019) 12190–12194.
doi: 10.1002/anie.201907188
B.C. Wang, T. Fan, F.Y. Xiong, et al., J. Am. Chem. Soc. 144 (2022) 19932–19941.
doi: 10.1021/jacs.2c08090
A. Jonek, S. Berger, E. Haak, Chem. Eur. J. 18 (2012) 15504–15511.
doi: 10.1002/chem.201202414
N. Thies, M. Gerlach, E. Haak, Eur. J. Org. Chem. 2013 (2013) 7354–7365.
doi: 10.1002/ejoc.201300803
N. Thies, E. Haak, Angew. Chem. Int. Ed. 54 (2015) 4097–4101.
doi: 10.1002/anie.201412207
S. Niu, Y. Luo, C. Xu, et al., ACS Catal. 12 (2022) 6840–6850.
doi: 10.1021/acscatal.2c00911
H.H. Kong, C. Zhu, S. Deng, et al., J. Am. Chem. Soc. 144 (2022) 21347–21355.
doi: 10.1021/jacs.2c09572
M.D. Li, Z.H. Wang, H. Zhu, et al., Angew. Chem. Int. Ed. 62 (2023) e202313911.
doi: 10.1002/anie.202313911
S.Y. Luo, G.Q. Lin; , Z.T. He, Org. Chem. Front. 11 (2024) 690–695.
doi: 10.1039/d3qo01749d
H.Y. Lu, Y.W. Chen, W.C. Zhao, et al., Nat. Synth. 2 (2023) 37–48.
C. Xu, Y. Luo, S. Niu, et al., Green Synth. Catal. 5 (2024) 303–309.
doi: 10.1016/j.gresc.2023.10.003
H. Zhu, L. Xu, B. Zhu, et al., Org. Lett. 25 (2023) 9213–9218.
doi: 10.1021/acs.orglett.3c03871
Y.Z. Sun, Z.Y. Ren, Y.X. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202314517.
doi: 10.1002/anie.202314517
D. Luo, S. Niu, F. Gong, et al., ACS Catal. 14 (2024) 2746–2757.
doi: 10.1021/acscatal.3c06146
H.D. Qian, X. Li, T. Yin, et al., Sci. China Chem. 67 (2024) 1175–1180.
doi: 10.1007/s11426-023-1922-5
J. Song, Z.J. Zhang, L.Z. Gong, Angew. Chem. Int. Ed. 56 (2017) 5212–5216.
doi: 10.1002/anie.201700105
J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 21 (2019) 4067–4071.
doi: 10.1021/acs.orglett.9b01246
Z.L. Li, G.C. Fang, Q.S. Gu, X.Y. Liu, Chem. Soc. Rev. 49 (2020) 32–48.
doi: 10.1039/c9cs00681h
X. Chang, Y. Yang, C. Shen, et al., J. Am. Chem. Soc. 143 (2021) 3519–3535.
doi: 10.1021/jacs.0c12911
Y.H. Wen, Z.J. Zhang, S. Li, J. Song, L.Z. Gong, Nat. Commun. 13 (2022) 1344.
doi: 10.1038/s41467-022-29059-0
Z. Zhang, P. Chen, G. Liu, Chem. Soc. Rev. 51 (2022) 1640–1658.
doi: 10.1039/d1cs00727k
Z. Yu, Z. Li, C. Yang, Q. Gu, X. Liu, Acta Chim. Sin. 81 (2023) 955–966.
doi: 10.6023/a23040161
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333