A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies
-
* Corresponding author.
E-mail address: yfrao@mail.xjtu.edu.cn (Y. Rao).
Citation:
Hongrui Zhang, Miaoying Cui, Yongjie Lv, Yongfang Rao, Yu Huang. A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies[J]. Chinese Chemical Letters,
;2025, 36(4): 110108.
doi:
10.1016/j.cclet.2024.110108
Y. Kumar, R. Kumar, P. Raizada, et al., J. Mater. Sci. Technol. 87 (2021) 234–257.
doi: 10.1016/j.jmst.2021.01.051
W.J. Liu, H. Jiang, H.Q. Yu, Energy Environ. Sci. 12 (2019) 1751–1779.
doi: 10.1039/c9ee00206e
H.J. Huang, M.M. Yan, C.Z. Yang, et al., Adv. Mater. 31 (2019) 1903415.
doi: 10.1002/adma.201903415
Q. Guo, C.Y. Zhou, Z.B. Ma, et al., Adv. Mater. 31 (2019) 1901997.
doi: 10.1002/adma.201901997
F. Chen, H.W. Huang, L. Guo, et al., Angew. Chem. Int. Ed. 58 (2019) 10061–10073.
doi: 10.1002/anie.201901361
Y. Cai, F.X. Luo, Y.J. Guo, et al., Molecules 28 (2023) 2142.
doi: 10.3390/molecules28052142
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
X.J. Shi, Y. Huang, Y.N. Bo, et al., Angew. Chem. Int. Ed. 61 (2022) e202203063.
doi: 10.1002/anie.202203063
H. Li, C.K. Cheng, Z.J. Yang, et al., Nat. Commun. 13 (2022) 6466.
doi: 10.1038/s41467-022-34263-z
Y.N. Zhang, M.Y. Xu, W.Q. Zhou, et al., J. Colloid Interf. Sci. 650 (2023) 1762–1772.
doi: 10.1016/j.jcis.2023.07.120
X.J. Chen, J. Wang, Y.Q. Chai, et al., Adv. Mater. 33 (2021) 2007479.
doi: 10.1002/adma.202007479
M.L. Xu, M. Lu, G.Y. Qin, et al., Angew. Chem. Int. Ed. 61 (2022) e202210700.
doi: 10.1002/anie.202210700
B.Q. Xia, B.W. He, J.J. Zhang, et al., Adv. Energy Mater. 12 (2022) 2201449.
doi: 10.1002/aenm.202201449
X.Y. Chen, X. Peng, L.B. Jiang, et al., Chem. Eng. J. 427 (2022) 130945.
doi: 10.1016/j.cej.2021.130945
M. Dai, Z.L. He, W.R. Cao, et al., Sep. Purif. Technol. 309 (2023) 123004.
doi: 10.1016/j.seppur.2022.123004
Y. Wang, X. Wu, J.Q. Liu, et al., J. Environ. Chem. Eng. 10 (2022) 107091.
doi: 10.1016/j.jece.2021.107091
Y. Yuan, R.T. Guo, L.F. Hong, et al., Mater. Today Energy 21 (2021) 100829.
doi: 10.1016/j.mtener.2021.100829
X. Li, H.P. Jiang, C.C. Ma, et al., Appl. Catal. B: Environ. 283 (2021) 119638.
doi: 10.1016/j.apcatb.2020.119638
E.S. Ghalehsefid, Z.G. Jahani, A. Aliabadi, et al., J. Environ. Chem. Eng. 11 (2023) 110160.
doi: 10.1016/j.jece.2023.110160
B.C. Zhu, B. Cheng, J.J. Fan, et al., Small Struct. 2 (2021) 2100086.
doi: 10.1002/sstr.202100086
Y.F. Huang, D. Wei, Z.Y. Li, et al., J. Energy Chem. 83 (2023) 423–432.
doi: 10.1016/j.jechem.2023.04.008
X.H. Wu, X.F. Wang, F.Z. Wang, et al., Appl. Catal. B: Environ. 247 (2019) 70–77.
doi: 10.1016/j.apcatb.2019.01.088
G.X. Zhang, Z.J. Guan, J.J. Yang, et al., Sol. RRL 6 (2022) 2200587.
doi: 10.1002/solr.202200587
J. Jiang, G.H. Wang, Y.C. Shao, et al., Chin. J. Catal. 43 (2022) 329–338.
doi: 10.1016/S1872-2067(21)63889-5
K. Wang, X.L. Shao, Q. Cheng, et al., Sol. RRL 6 (2022) 2200736.
doi: 10.1002/solr.202200736
N.Y. Huang, J.Q. Shen, X.W. Zhang, et al., J. Am. Chem. Soc. 144 (2022) 8676–8682.
doi: 10.1021/jacs.2c01640
K. Sun, Y.Y. Qian, H.L. Jiang, Angew. Chem. Int. Ed. 62 (2023) e202217565.
doi: 10.1002/anie.202217565
Y.P. Zhang, J.X. Xu, J. Zhou, et al., Chin. J. Catal. 43 (2022) 971–1000.
doi: 10.1016/S1872-2067(21)63934-7
R.N. Ali, W.A. Qureshi, H. Naz, et al., New J. Chem. 47 (2023) 15534–15542.
doi: 10.1039/d3nj02143b
R.F. Chen, Y. Wang, Y. Ma, et al., Nat. Commun. 12 (2021) 1354.
doi: 10.1038/s41467-021-21527-3
J.H. Ding, X.Y. Guan, J. Lv, et al., J. Am. Chem. Soc. 145 (2023) 3248–3254.
doi: 10.1021/jacs.2c13817
L. Sun, L.L. Li, J. Yang, et al., Chin. J. Catal. 43 (2022) 350–358.
doi: 10.1016/S1872-2067(21)63869-X
Y.J. Ren, J.J. Foo, D.Q. Zeng, et al., Small Struct. 3 (2022) 2200017.
doi: 10.1002/sstr.202200017
T.X. Zhang, T. Wang, F.L. Meng, et al., J. Mater. Chem. C 10 (2022) 5400–5424.
doi: 10.1039/d2tc00432a
X.L. Gou, F.Y. Cheng, Y.H. Shi, et al., J. Am. Chem. Soc. 128 (2006) 7222–7229.
doi: 10.1021/ja0580845
M.S. Yu, X.Y. Lv, A.M. Idris, et al., J. Colloid Interf. Sci. 612 (2022) 782–791.
doi: 10.1016/j.jcis.2021.12.197
S.P. Ding, X.F. Liu, Y.Q. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 17911–17922.
doi: 10.1021/acsami.8b02955
B. Pan, Y. Wu, B. Rhimi, et al., J. Energy Chem. 57 (2021) 1–9.
doi: 10.1155/2021/8132569
D.X. Zhou, X.D. Xue, X. Wang, et al., Appl. Catal. B: Environ. 310 (2022) 121337.
doi: 10.1016/j.apcatb.2022.121337
S.Q. Zhang, Z.F. Zhang, Y.M. Si, et al., ACS Nano 15 (2021) 15238–15248.
doi: 10.1021/acsnano.1c05834
Y.Q. He, C.L. Chen, Y.X. Liu, et al., Nano Lett. 22 (2022) 4970–4978.
doi: 10.1021/acs.nanolett.2c01666
Y.Q. He, H. Rao, K.P. Song, et al., Adv. Funct. Mater. 29 (2019) 1905153.
doi: 10.1002/adfm.201905153
J.W. Pan, G.X. Zhang, Z.J. Guan, et al., J. Energy Chem. 58 (2021) 408–414.
doi: 10.1016/j.jechem.2020.10.030
Q.L. Huang, J.Q. Hu, Y.F. Hu, et al., Environ. Sci. Nano 9 (2022) 4433–4444.
doi: 10.1039/d2en00781a
J.M. Li, C.C. Wu, J. Li, et al., Chin. J. Catal. 43 (2022) 339–349.
doi: 10.1016/S1872-2067(21)63875-5
S. Cao, J.G. Yu, S. Wageh, et al., J. Mater. Chem. A 10 (2022) 17174–17184.
doi: 10.1039/d2ta05181h
Q.H. Zhu, Q. Xu, M.M. Du, et al., Adv. Mater. 34 (2022) 2202929.
doi: 10.1002/adma.202202929
V.B.Y. Oh, S.F. Ng, W.J. Ong, Ecomat 4 (2022) e12204.
doi: 10.1002/eom2.12204
L.Y. Zhang, J.J. Zhang, H.G. Yu, et al., Adv. Mater. 34 (2022) 2107668.
doi: 10.1002/adma.202107668
S. Wageh, A.A. Al-Ghamdi, R. Jafer, et al., Chin. J. Catal. 42 (2021) 667–669.
doi: 10.1016/S1872-2067(20)63705-6
Q.L. Xu, L.Y. Zhang, B. Cheng, et al., Chem 6 (2020) 1543–1559.
doi: 10.1016/j.chempr.2020.06.010
J.W. Fu, Q.L. Xu, J.X. Low, et al., Appl. Catal. B: Environ. 243 (2019) 556–565.
doi: 10.1016/j.apcatb.2018.11.011
Y.N. Zhang, M. Gao, S.T. Chen, et al., Acta Phys. Chim. Sin. 39 (2023) 2211051.
doi: 10.3866/pku.whxb202211051
K. Wang, X.L. Shao, K.J. Zhang, et al., Appl. Surf. Sci. 596 (2022) 153444.
doi: 10.1016/j.apsusc.2022.153444
L. Zhao, B.X. Yang, G.X. Zhuang, et al., Small 18 (2022) 2201668.
doi: 10.1002/smll.202201668
P.Y. Dong, T. Cheng, J.L. Zhang, et al., ACS Appl. Energy Mater. 6 (2023) 1103–1115.
doi: 10.1021/acsaem.2c03806
A. Kumar, A. Khosla, S.K. Sharma, et al., Fuel 333 (2023) 126267.
doi: 10.1016/j.fuel.2022.126267
Q.L. Xu, S. Wageh, A.A. Al-Ghamdi, et al., J. Mater. Sci. Technol. 124 (2022) 171–173.
doi: 10.1016/j.jmst.2022.02.016
J.J. Jiao, Z.X. Wang, J. Wang, et al., Appl. Surf. Sci. 639 (2023) 158260.
doi: 10.1016/j.apsusc.2023.158260
Z.F. Yang, L.L. Wang, M. Fang, et al., Sep. Purif. Technol. 305 (2023) 122509.
doi: 10.1016/j.seppur.2022.122509
J. Wang, S.J. Sun, R. Zhou, et al., J. Mater. Sci. Technol. 78 (2021) 1–19.
doi: 10.1016/j.jmst.2020.09.045
Z.Y. Xie, L.J. Xie, F.F. Qi, et al., J. Colloid Interf. Sci. 650 (2023) 784–797.
doi: 10.1016/j.jcis.2023.07.032
J.J. Zhang, L.Y. Zhang, W. Wang, et al., J. Phys. Chem. Lett. 13 (2022) 8462–8469.
doi: 10.1021/acs.jpclett.2c02125
C. Cheng, B.W. He, J.J. Fan, et al., Adv. Mater. 33 (2021) 2100317.
doi: 10.1002/adma.202100317
X.N. Wang, M. Sayed, O. Ruzimuradov, et al., Appl. Mater. Today 29 (2022) 101609.
doi: 10.1016/j.apmt.2022.101609
L.B. Wang, B. Cheng, L.Y. Zhang, et al., Small 17 (2021) 2103447.
doi: 10.1002/smll.202103447
X.L. Su, S.K. Wang, J.C. Liu, et al., Chemosphere 340 (2023) 139777.
doi: 10.1016/j.chemosphere.2023.139777
J.Q. Liu, J. Wan, L. Liu, et al., Chem. Eng. J. 430 (2022) 133125.
doi: 10.1016/j.cej.2021.133125
S. Wang, X. Du, C.H. Yao, et al., Nano Res. 16 (2023) 2152–2162.
doi: 10.1007/s12274-022-4960-8
M. Dai, H.J. Yu, W.H. Chen, et al., Chem. Eng. J. 470 (2023) 144240.
doi: 10.1016/j.cej.2023.144240
J.J. Peng, J.Y. Yang, B. Chen, et al., Biosens. Bioelectron. 175 (2021) 112873.
doi: 10.1016/j.bios.2020.112873
H.T. Fan, Z. Wu, K.C. Liu, et al., Chem. Eng. J. 433 (2022) 134474.
doi: 10.1016/j.cej.2021.134474
M.Y. Zhao, S. Liu, D.M. Chen, et al., Chin. J. Catal. 43 (2022) 2615–2624.
doi: 10.1016/S1872-2067(22)64134-2
Z.T. He, C. Qian, D.M. Chen, et al., J. Colloid Interf. Sci. 651 (2023) 138–148.
doi: 10.1016/j.jcis.2023.07.179
S.K. Wang, D.F. Zhang, P. Su, et al., J. Colloid Interf. Sci. 650 (2023) 825–835.
doi: 10.1016/j.jcis.2023.07.052
Q. Zhou, L.H. Zhang, L.F. Zhang, et al., J. Hazard. Mater. 438 (2022) 129438.
doi: 10.1016/j.jhazmat.2022.129438
Y.C. Guo, J.M. Sun, Y. Tang, et al., Energy Environ. Sci. 16 (2023) 3462–3473.
doi: 10.1039/d3ee01522j
L.L. Li, D.K. Ma, Q.L. Xu, et al., Chem. Eng. J. 437 (2022) 135153.
doi: 10.1016/j.cej.2022.135153
Y.X. Tan, Z.M. Chai, B.H. Wang, et al., ACS Catal. 11 (2021) 2492–2503.
doi: 10.1021/acscatal.0c05703
Z.J. Zhang, X.S. Wang, D.B. Li, et al., Small 20 (2024) 2305566.
doi: 10.1002/smll.202305566
J.Y. Liu, M. Liu, S.B. Zheng, et al., J. Colloid Interf. Sci. 635 (2023) 284–294.
doi: 10.1016/j.jcis.2022.12.131
Y.X. Li, J.X. Wang, S.Q. Peng, et al., Int. J. Hydrogen Energy 35 (2010) 7116–7126.
doi: 10.1016/j.ijhydene.2010.02.017
L.L. Sun, X.S. Liu, X.H. Jiang, et al., J. Mater. Chem. A 10 (2022) 25279–25294.
doi: 10.1039/d2ta08337j
J.F. Zhu, Q.Y. Bi, Y.H. Tao, et al., Adv. Funct. Mater. 33 (2023) 2213131.
doi: 10.1002/adfm.202213131
H. Su, H.M. Lou, Z.P. Zhao, et al., Chem. Eng. J. 430 (2022) 132770.
doi: 10.1016/j.cej.2021.132770
Y.M. Xi, W.B. Chen, W.R. Dong, et al., ACS Appl. Mater. Interfaces 13 (2021) 39491–39500.
doi: 10.1021/acsami.1c11233
K.Y. Chen, Y.X. Shi, P. Shu, et al., Chem. Eng. J. 454 (2023) 140053.
doi: 10.1016/j.cej.2022.140053
Y.X. Shi, L.L. Li, Z. Xu, et al., Chem. Eng. J. 459 (2023) 141549.
doi: 10.1016/j.cej.2023.141549
R.Z. Xiong, X.X. Ke, W.F. Jia, et al., J. Mater. Chem. A 11 (2023) 2178–2190.
doi: 10.1039/d2ta09255g
Y.C. Wang, M.J. Liu, C.X. Wu, et al., Small 18 (2022) 2202544.
doi: 10.1002/smll.202202544
Y.W. Xiao, B. Yao, M.H. Cao, et al., Small 19 (2023) 2207499.
doi: 10.1002/smll.202207499
L.H. Xia, K.S. Zhang, X.D. Wang, et al., Appl. Catal. B: Environ. 325 (2023) 122387.
doi: 10.1016/j.apcatb.2023.122387
H.Y. Liu, F. Sun, X.Y. Li, et al., Composites Part B: Eng. 259 (2023) 110746.
doi: 10.1016/j.compositesb.2023.110746
Z.W. Zhao, Z.L. Wang, J.F. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2214470.
doi: 10.1002/adfm.202214470
H.B. Yu, J.H. Huang, L.B. Jiang, et al., Appl. Catal. B: Environ. 298 (2021) 120618.
doi: 10.1016/j.apcatb.2021.120618
Y.H. Peng, X.L. Guo, S.F. Xu, et al., J. Energy Chem. 75 (2022) 276–284.
doi: 10.1016/j.jechem.2022.06.027
H.F. Li, H.T. Yu, X. Quan, et al., Adv. Funct. Mater. 25 (2015) 3074–3080.
doi: 10.1002/adfm.201500521
J.J. Lu, Y.H. Chen, L.N. Li, et al., Chem. Eng. J. 362 (2019) 1–11.
doi: 10.1016/j.cej.2018.12.130
L.L. Wang, T. Yang, L.J. Peng, et al., Chin. J. Catal. 43 (2022) 2720–2731.
doi: 10.1016/S1872-2067(22)64133-0
J.X. Bai, W.L. Chen, L. Hao, et al., Chem. Eng. J. 447 (2022) 137488.
doi: 10.1016/j.cej.2022.137488
Y. Yuan, R.T. Guo, L.F. Hong, et al., Chemosphere 287 (2022) 132241.
doi: 10.1016/j.chemosphere.2021.132241
Z.J. Chen, H. Guo, H.Y. Liu, et al., Chem. Eng. J. 438 (2022) 135471.
doi: 10.1016/j.cej.2022.135471
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Zheng Zhang , Lei Shi , Bin Wang , Jingyuan Qu , Xiaoling Wang , Tao Wang , Qitao Jiang , Wuhong Xue , Xiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016