Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2

Li Li Zhi-Xin Yan Chuan-Kun Ran Yi Liu Shuo Zhang Tian-Yu Gao Long-Fei Dai Li-Li Liao Jian-Heng Ye Da-Gang Yu

Citation:  Li Li, Zhi-Xin Yan, Chuan-Kun Ran, Yi Liu, Shuo Zhang, Tian-Yu Gao, Long-Fei Dai, Li-Li Liao, Jian-Heng Ye, Da-Gang Yu. Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2[J]. Chinese Chemical Letters, 2024, 35(12): 110104. doi: 10.1016/j.cclet.2024.110104 shu

Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2

English

  • It is highly desirable to synthesize useful and sought-after compounds from readily available starting materials under mild conditions with ease of operation. Various investigations have shown that the production of valuable carboxylic acids using carbon dioxide (CO2) as C1 source is an attractive strategy due to the abundance, availability, sustainability, and non-toxicity of CO2 [123]. Among diverse methods to produce carboxylic acids, carboxylation of organo halides with CO2 is considered as one of the most attractive and practical approaches [2431]. One representative strategy is conversion of organo halides to organometallic reagents, including Grignard, organolithium and organozinc reagents, which could react with CO2 to give carboxylic acids [3247]. However, the practical application of this method is limited by the preparation, storage and use of the air and moisture-sensitive organometallic reagents. Meanwhile, transition metal-promoted or -catalyzed carboxylation of organo halides with CO2 has emerged as an efficient and highly promising strategy to generate a variety of valuable carboxylic acids [4859]. Compared with the widely investigated carboxylation of alkyl bromines and iodinates with CO2, those transformations with unactivated alkyl chlorides, which are more readily available and inexpensive, were much less investigated due to the higher bond energy of C(sp3)—Cl cleavage. Notably, Martin reported a leading work in this field on nickel-catalyzed carboxylation of alkyl chlorides with CO2 under mild reaction conditions (Scheme 1A) [60]. However, excess of Mn powder was used as reductant, which might cause safety issue in large-scale synthesis. Therefore, it is still highly desirable to develop other sustainable strategies to realize safe and user-friendly carboxylation of unactivated alkyl chlorides.

    Scheme 1

    Scheme 1.  Carboxylation of C(sp3)—Cl bonds with CO2.

    As well-known, electrosynthesis has proven to be an efficient and environmentally friendly method and is increasingly pursued as a sustainable synthetic technology [61102]. The direct electro-reductive or the integration of electrochemistry with transition-metal catalysis has been developed as an effective strategy to realize the carboxylation reactions [103129], including those of activated C(sp3)—Cl bonds in benzyl chlorides and allyl chlorides (Scheme 1B) [130142]. However, despite recent advances, the electro-reductive carboxylation of unactivated alkyl chlorides remains challenging. In addition to the high bond dissociation energy (~350 kJ/mol) of the C(sp3)—Cl bonds, many side reactions, such as radical involved dehydrochlorination [143], radical-radical coupling, and reductive protonation [144-145], might occur to result in low selectivity. To the best of our knowledge, there is only one isolated example for carboxylation of unactivated C—Cl bonds to give 25% yield of carboxylation products via successive single-electron reduction (Scheme 1C) [146]. With our continuous interest in carboxylation with CO2 [147151], especially electrochemical carboxylation [152157], herein we report an electro-reductive carboxylation of unactivated alkyl chlorides with CO2, offering an efficient and practical approach for the functionalization of inert alkyl chlorides and polyvinyl chloride (Scheme 1D).

    We initiated our studies by investigating the electrochemical carboxylation of 1-(3-chloropropyl)−4-methoxybenzene 1a with CO2 to generate alkyl carboxylic acid derivative 2a. After systematic optimization of this reaction conditions (please see Supporting information for details), the desired product 2a was obtained in 81% isolated yield by employing Pb as the cathode and Al as the anode (Table 1, entry 1). A variety of cathode electrode materials were tested (entries 2–4) to give lower yields than lead (Pb), which has been widely used in electroreductive industrial processes and the detrimental corrosion should be paid attention to [158]. Among the tested anodes, aluminum proved to be the best choice (entries 5 and 6). Furthermore, when nBu4NCl or nBu4NBF4 was employed as an electrolyte in the reaction, it resulted in lower yield of 2a (entries 7 and 8). In addition, an attempt to decrease the current resulted in a slightly decrease in yield (entry 9). This reaction could also be carried out with polar solvents, such as N-methyl-2-pyrrolidone (NMP), but with a lower yield (entry 10). The yield was decreases drastically to 65% when the reaction temperature was elevated to 40 ℃ (entry 11). Control experiments demonstrated that catalytic amounts of silane have a significant contribution to this reaction (entry 12), both CO2 (entry13) and electric current (entry 14) played an important role in this conversion.

    Table 1

    Table 1.  Optimization of the reaction conditions.a
    DownLoad: CSV

    With the optimized conditions in hand (Table 1, entry 12), the scope of unactivated alkyl chlorides was then examined (Scheme 2). This transformation could proceed smoothly for unactivated alkyl chlorides with different chain lengths. For example, (3-chloropropyl)bezene derivatives bearing methoxy (1b, 1c), alkyl (1d), phenyl (1e) or fluorine (1f) delivered the corresponding products 2a-2f in good yields. Moreover, high value-added alkyl carboxylic acids could be successfully obtained from alkyl chlorides with longer carbon chain (1g-1j). In addition, alkyl chlorides in the presence of branched substituents also give the target products (2k) in moderate yields. The universality of our method was further illustrated by the tolerance of ether (2l, 2m), thiol ether (2n), amides (2o, 2p), heterocycles (2q) and ester (2r) groups. To our delight, secondary alkyl chlorides (1s, 1t) were also suitable substrates.

    Scheme 2

    Scheme 2.  Substrate scope of unactivated alkyl chlorides. The same reaction conditions as Table 1, entry 1. Isolated yields.

    Based on the success in carboxylation of unactivated alkyl chlorides, we posed the question of whether this strategy could be applied to the upcycling of polyvinyl chloride (PVC), which is the world's fourth most popular general-purpose plastic [159]. Obviously, maximizing the amount of PVC upgrade to other functional materials is attractive [160,161]. However, currently, waste PVC materials upgrading lack green treatment methods due to their chemical inertness. We envision the possibility of achieving post-carboxylation of C—Cl bonds in PVC with CO2 to treat this problem. Therefore, we treated a commercial PVC tube under 0.1 mmol TBAI and 10 mol% DEHP [bis(2-ethylhexyl)phthalate] in DMF using a Pb cathode and Al anode at 60 ℃ under 50 mA CCE for 10 h. Then, a carboxyl-modified PVC was obtained after easily precipitation in MeOH. Attenuated total reflection flourier transform infrared (ATR-FTIR) spectroscopy showed a stretching frequency at 1760 cm−1, indicating the successful introduction of the carboxyl group. Furthermore, element analyser analysis showed that the proportions of C, H, and O elements in modified PVC were 47.74%, 6.22%, and 7.36%, respectively. Therefore, the carboxyl group content in modified PVC is around 14%, and the dechlorination protonation content is 4.8%. Additionally, water contact angle testing showed the water contact angle of PVC changed from 97.8° to 74.3° due to the modification, indicating that hydrophobic PVC can be modified to hydrophilic PVC through the introduction of carboxyl groups (Scheme 3).

    Scheme 3

    Scheme 3.  Carboxylation of PVC. (A) The photo of commercial PVC tube. (B) The photo of modified PVC. (C) Contact angle test image of commercial PVC tube. (D) Contact angle test image of modified PVC.

    To further understand the mechanism of this reaction, some control experiments were conducted (Scheme 4, see more details in Supporting information). The experiment in absence of CO2 under the standard conditions provided the reductive protonation product 2p' in 49% yield (Scheme 4A). When 10 equiv. of D2O was subject to the reaction, we obtained the reductive deuteration product d in 36% isolated yield with 93% deuterium incorporation, which suggested that the alkyl anion might exist in this reaction. Additionally, the detection of formate when conducting experiment in the absence of 1a verified CO2 radical anion might be generated via reduction of CO2 at the cathode. According to previous work [162], the reaction of hydrosilance, carboxylates, and CO2 could give a mixture of formate and silanolate. When we conducted the control experiment of 1a using formate instead of Ph3SiH, we found the yield of 2a was decreases drastically to 19%, which indicates that the role of silanes is not to provide formate. Further control experiment validates the role of silanes in our laboratory.

    Scheme 4

    Scheme 4.  Mechanistic investigation.

    On the basis of the experimental results and previous reports [145], we proposed the following plausible mechanism for this electro-reductive carboxylation (Scheme 5). First, at the cathode, single-electron transfer (SET) reduction of 1 takes place to generate the corresponding radical anion A, which further undergoes C—Cl bond cleavage to release chloride anion and the alkyl radical B. Further SET reduction of B at the cathode forms the alkyl carbanion C, which reacts with CO2 to give the corresponding carboxylate. At this stage, the single-electron reduction of 1 by CO2 radical anion to give A [163] and direct radical coupling of B with CO2 radical anion cannot be excluded.

    Scheme 5

    Scheme 5.  Proposed reaction mechanism.

    In conclusion, we have developed an efficient and practical strategy for electrochemical carboxylation of unactivated alkyl chlorides with CO2 via C—Cl bond cleavage. Both primary and secondary alkyl chlorides could undergo selective carboxylation with CO2. This method features mild reaction conditions, low electrolyte concentration, broad substrate scope and good functional group tolerance. Notably, this strategy is a promising and feasible method to recycle and reuse waste PVC, which could convert the PVC into hydrophilic functional products containing carboxylate groups. The preliminary mechanistic studies indicate that alkyl radical and alkyl anion might be involved in this reaction.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Li Li: Writing – original draft, Methodology, Investigation. Zhi-Xin Yan: Writing – original draft, Methodology, Investigation. Chuan-Kun Ran: Writing – original draft, Methodology, Investigation. Yi Liu: Investigation. Shuo Zhang: Investigation. Tian-Yu Gao: Methodology, Investigation. Long-Fei Dai: Methodology. Li-Li Liao: Writing – review & editing, Supervision, Conceptualization. Jian-Heng Ye: Writing – review & editing, Supervision. Da-Gang Yu: Writing – review & editing, Validation, Supervision, Funding acquisition, Conceptualization.

    Financial support was provided by the National Natural Science Foundation of China (Nos. 22225106, 22201027) and Fundamental Research Funds for the Central Universities. We thank Xiaoyan Wang from the Analysis and Testing Center of Sichuan University as well as Jing Li, Qinfang Zhang and Dongyan Deng from College of Chemistry at Sichuan University for compound testing. We also thank the comprehensive training platform of the Specialized Laboratory in the College of Chemistry at Sichuan University and the collaborative innovation center for eco-friendly and fire-safety polymeric materials for polymer characterization.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2024.110104.


    1. [1]

      M. Aresta, Carbon Dioxide as Chemical Feedstock, WileyVCH, Germany, 2010.

    2. [2]

      K. Huang, C.L. Sun, Z.J. Shi, Chem. Soc. Rev. 40 (2012) 2435–2452.

    3. [3]

      L. Ackermann, Angew. Chem. Int. Ed. 50 (2011) 3842–3844. doi: 10.1002/anie.201007883

    4. [4]

      W. Zhang, X.B. Lu, Chin. J. Catal. 33 (2012) 745–756. doi: 10.1016/S1872-2067(11)60390-2

    5. [5]

      L. Zhang, Z. Hou, Chem. Sci. 4 (2013) 3395–3403. doi: 10.1039/c3sc51070k

    6. [6]

      M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 114 (2014) 1709–1742. doi: 10.1021/cr4002758

    7. [7]

      Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 6 (2015) 5933. doi: 10.1038/ncomms6933

    8. [8]

      Q.W. Song, Z.H. Zhou, L.N. He, Green Chem. 19 (2017) 3707–3728. doi: 10.1039/C7GC00199A

    9. [9]

      A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 57 (2018) 15948–15982. doi: 10.1002/anie.201803186

    10. [10]

      Y.G. Chen, X.T. Xu, K. Zhang, et al., Synthesis 50 (2018) 35–48. doi: 10.1055/s-0036-1590908

    11. [11]

      J. Hou, J.S. Li, J. Wu, Asian J. Org. Chem. 7 (2018) 1439–1447. doi: 10.1002/ajoc.201800226

    12. [12]

      C.S. Yeung, Angew. Chem. Int. Ed. 58 (2019) 5492–5502. doi: 10.1002/anie.201806285

    13. [13]

      Y. Yang, J.W. Lee, Chem. Sci. 10 (2019) 3905–3926. doi: 10.1039/C8SC05539D

    14. [14]

      M.D. Burkart, N. Hazari, C.L. Tway, E.L. Zeitler, ACS Catal. 9 (2019) 7937–7956. doi: 10.1021/acscatal.9b02113

    15. [15]

      S. Wang, C. Xi, Chem. Soc. Rev. 48 (2019) 382–404. doi: 10.1039/C8CS00281A

    16. [16]

      L. Zhang, Z. Li, M. Takimoto, Z. Hou, Chem. Rec. 20 (2019) 494–512.

    17. [17]

      B. Cai, H.W. Cheo, T. Liu, J. Wu, Angew. Chem. Int. Ed. 60 (2021) 18950–18980. doi: 10.1002/anie.202010710

    18. [18]

      G. Bertuzzi, A. Cerveri, L. Lombardi, M. Bandini, Chin. J. Chem. 39 (2021) 3116–3126. doi: 10.1002/cjoc.202100450

    19. [19]

      Y. Yi, W. Hang, C. Xi, Chin. J. Org. Chem. 41 (2021) 80–93. doi: 10.6023/cjoc202007013

    20. [20]

      G. Zhang, Y. Cheng, M. Beller, F. Chen, Adv. Synth. Catal. 363 (2021) 1583–1596. doi: 10.1002/adsc.202001280

    21. [21]

      L. Wang, C. Qi, W. Xiong, H. Jiang, Chin. J. Catal. 43 (2022) 1598–1617. doi: 10.1016/S1872-2067(21)64029-9

    22. [22]

      N. Iwasawa, Bull. Chem. Soc. Jpn. 96 (2021) 824.

    23. [23]

      K. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc. 139 (2017) 9467–9470. doi: 10.1021/jacs.7b04838

    24. [24]

      Q. Wang, Y. Wang, M. Liu, G. Chu, Y. Qiu, Chin. J. Chem. 42 (2024) 2249–2266. doi: 10.1002/cjoc.202400008

    25. [25]

      Q.Y. Meng, S. Wang, B. König, Angew. Chem. Int. Ed. 56 (2017) 13426–13430. doi: 10.1002/anie.201706724

    26. [26]

      B. Sahoo, P. Bellotti, F. Juli ´ α-Hernández, et al., Chem. Eur. J. 25 (2019) 9001–9005. doi: 10.1002/chem.201902095

    27. [27]

      C. Zhu, Y.F. Zhang, Z.Y. Liu, et al., Chem. Sci. 10 (2019) 6721–6726. doi: 10.1039/C9SC01336A

    28. [28]

      S.S. Yan, S.H. Liu, L. Chen, et al., Chem 7 (2021) 3099–3113. doi: 10.1016/j.chempr.2021.08.004

    29. [29]

      Z.Y. Bo, S.S. Yan, T.Y. Gao, et al., Chin. J. Catal. 43 (2022) 2388–2394. doi: 10.1016/S1872-2067(22)64140-8

    30. [30]

      K. Jing, M.K. Wei, S.S. Yan, et al., Chin. J. Catal. 43 (2022) 1667–1673. doi: 10.1016/S1872-2067(21)63859-7

    31. [31]

      J. Davies, J.R. Lyonnet, B. Carvalho, et al., J. Am. Chem. Soc. 146 (2024) 1753–1759. doi: 10.1021/jacs.3c11205

    32. [32]

      L.N. Mander, S.P. Sethi, Tetrahedron. Lett. 24 (1983) 5425–5428. doi: 10.1016/S0040-4039(00)87886-7

    33. [33]

      M. Shi, K.M. Nicholas, J. Am. Chem. Soc. 119 (1997) 5057–5058. doi: 10.1021/ja9639832

    34. [34]

      I. Mutule, E. Suna, Tetrahedron 61 (2005) 11168–11176. doi: 10.1016/j.tet.2005.09.022

    35. [35]

      K. Ukai, M. Aoki, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 128 (2006) 8706–8707. doi: 10.1021/ja061232m

    36. [36]

      C.S. Yeung, V. Dong, J. Am. Chem. Soc. 130 (2008) 7826–7827. doi: 10.1021/ja803435w

    37. [37]

      H. Ochiai, M. Jang, K. Hirano, H. Yorimitsu, K. Oshima, Org. Lett. 10 (2008) 2681–2683. doi: 10.1021/ol800764u

    38. [38]

      T. Ohishi, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 47 (2008) 5792–5795. doi: 10.1002/anie.200801857

    39. [39]

      J. Wu, N. Hazari, Chem. Coumun. 47 (2011) 1069–1071. doi: 10.1039/C0CC03191G

    40. [40]

      M. Takimoto, Z. Hou, Chem. Eur. J. 19 (2013) 11439–11445. doi: 10.1002/chem.201301456

    41. [41]

      X. Feng, A. Sun, S. Zhang, X. Yu, M. Bao, Org. Lett. 15 (2013) 108–111. doi: 10.1021/ol303135e

    42. [42]

      A. Ueno, M. Takimoto, W.N.O. Wylie, et al., Chem. Asian J. 10 (2015) 1010–1016. doi: 10.1002/asia.201403247

    43. [43]

      S. Wang, P. Shao, C. Chem, C. Xi, Org. Lett. 17 (2015) 5112–5115. doi: 10.1021/acs.orglett.5b02619

    44. [44]

      B. Miao, S. Ma, Org. Chem. Front. 2 (2015) 65–68. doi: 10.1039/C4QO00300D

    45. [45]

      B. Miao, G. Li, S. Ma, Chem. Eur. J. 21 (2015) 17224–17228. doi: 10.1002/chem.201503494

    46. [46]

      P. Shao, S. Wang, C. Chen, C. Xi, Org. Lett. 18 (2016) 2050–2053. doi: 10.1021/acs.orglett.6b00665

    47. [47]

      W. Hang, Y. Yi, C. Xi, Organometallics 39 (2020) 1476–1479. doi: 10.1021/acs.organomet.9b00712

    48. [48]

      A. Correa, R. Martin, J. Am. Chem. Soc. 131 (2009) 15974–15975. doi: 10.1021/ja905264a

    49. [49]

      T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 123 (2012) 9106–9109.

    50. [50]

      T. León, A. Correa, R. Martin, J. Am. Chem. Soc. 135 (2013) 1221–1224. doi: 10.1021/ja311045f

    51. [51]

      H. Tran-Vu, O. Daugulis, ACS Catal. 3 (2013) 2417–2420. doi: 10.1021/cs400443p

    52. [52]

      B. Miao, S. Ma, Chem. Commun. 50 (2014) 3285–3287. doi: 10.1039/c4cc00148f

    53. [53]

      S. Zhang, W.Q. Chen, A. Yu, L.N. He, ChemCatChem 7 (2015) 3972–3977. doi: 10.1002/cctc.201500724

    54. [54]

      F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 545 (2017) 84–88. doi: 10.1038/nature22316

    55. [55]

      S.L. Xie, X.Y. Cui, X.T. Gao, et al., Org. Chem. Front. 6 (2019) 3678–3682. doi: 10.1039/C9QO00923J

    56. [56]

      S.S. Yan, D.S. Wu, J.H. Ye, et al., ACS Catal. 9 (2019) 6987–6992. doi: 10.1021/acscatal.9b02351

    57. [57]

      R.J. Somerville, C. Odena, M.F. Obst, et al., J. Am. Chem. Soc. 142 (2020) 10936–10941. doi: 10.1021/jacs.0c04695

    58. [58]

      L. Wang, T. Li, S. Perveen, et al., Angew. Chem. Int. Ed. 61 (2022) e202213943. doi: 10.1002/anie.202213943

    59. [59]

      D. Li, L. Wei, C. Qi, et al., J. Org. Chem. 88 (2023) 5205–5211. doi: 10.1021/acs.joc.2c01808

    60. [60]

      M. Börjesson, T. Moragas, R. Martin, J. Am. Chem. Soc. 138 (2016) 7504–7507. doi: 10.1021/jacs.6b04088

    61. [61]

      R.D. Little, K.D. Moeller, Electrochem. Soc. Interface 11 (2002) 36. doi: 10.1149/2.F06024IF

    62. [62]

      M. Yan, Y. Kawanata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319. doi: 10.1021/acs.chemrev.7b00397

    63. [63]

      Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 118 (2018) 4485–4540. doi: 10.1021/acs.chemrev.7b00271

    64. [64]

      D. Pletcher, R.A. Green, R.C.D. Brown, Chem. Rev. 118 (2018) 4573–4591. doi: 10.1021/acs.chemrev.7b00360

    65. [65]

      J.I. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 118 (2018) 4702–4730. doi: 10.1021/acs.chemrev.7b00475

    66. [66]

      K.D. Moeller, Chem. Rev. 118 (2018) 4817–4833. doi: 10.1021/acs.chemrev.7b00656

    67. [67]

      J.E. Nutting, M. Rafiee, S.S. Stahl, Chem. Rev. 118 (2018) 4834–4885. doi: 10.1021/acs.chemrev.7b00763

    68. [68]

      M.D. Kärkäs, Chem. Soc. Rev. 47 (2018) 5786–5865. doi: 10.1039/C7CS00619E

    69. [69]

      S.R. Waldvogel, S. Lips, M. Selt, B. Riehl, C.J. Kampf, Chem. Rev. 118 (2018) 6706–6765. doi: 10.1021/acs.chemrev.8b00233

    70. [70]

      P. Xiong, H.C. Xu, Acc. Chem. Res. 52 (2019) 3339–3350. doi: 10.1021/acs.accounts.9b00472

    71. [71]

      J.C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 53 (2020) 547–560. doi: 10.1021/acs.accounts.9b00529

    72. [72]

      K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310. doi: 10.1021/acs.accounts.9b00603

    73. [73]

      T.H. Meyer, I. Choi, C. Tian, L. Ackermann, Chem 6 (2020) 2484–2496. doi: 10.1016/j.chempr.2020.08.025

    74. [74]

      Y. Yuan, J. Yang, A. Lei, Chem. Soc. Rev. 50 (2021) 10058–10086. doi: 10.1039/D1CS00150G

    75. [75]

      C. Ma, P. Fang, Z.R. Liu, et al., Sci. Bull. 66 (2021) 2412–2429. doi: 10.1016/j.scib.2021.07.011

    76. [76]

      L.F.T. Novaes, J. Liu, Y. Shen, et al., Chem. Soc. Rev. 50 (2021) 7941–8002. doi: 10.1039/D1CS00223F

    77. [77]

      C.A. Malapit, M.B. Prater, J.R. Cabrera-Pardo, et al., Chem. Rev. 122 (2022) 3180–3218. doi: 10.1021/acs.chemrev.1c00614

    78. [78]

      X. Cheng, A. Lei, T.S. Mei, et al., CCS Chem. 4 (2022) 1120–1152. doi: 10.31635/ccschem.021.202101451

    79. [79]

      Y. Zhang, Z. Cai, S. Warratz, C. Ma, L. Ackermann, Sci. China Chem. 66 (2023) 703–717. doi: 10.1007/s11430-022-1071-4

    80. [80]

      Y. Wang, S. Dana, H. Long, et al., Chem. Rev. 123 (2023) 11269–11335. doi: 10.1021/acs.chemrev.3c00158

    81. [81]

      J. Rein, S.B. Zacate, K. Mao, S. Lin, Chem. Soc. Rev. 52 (2023) 8106–8125. doi: 10.1039/D3CS00511A

    82. [82]

      M. Ju, Z. Lu, L.F.T. Novaes, J.I.M. Alvarado, S. Lin, J. Am. Soc. Chem. 145 (2023) 19478–19489. doi: 10.1021/jacs.3c07070

    83. [83]

      X. Wang, S. Wu, Y. Zhong, et al., Chin. Chem. Lett. 34 (2023) 107537. doi: 10.1016/j.cclet.2022.05.051

    84. [84]

      J. Jiang, K.L. Wang, X. Li, et al., Chin. Chem. Lett. 34 (2023) 108699. doi: 10.1016/j.cclet.2023.108699

    85. [85]

      H.T. Ji, J. Jiang, W.B. He, et al., J. Org. Chem. 89 (2024) 4113–4119. doi: 10.1021/acs.joc.3c02946

    86. [86]

      H.Y. Song, J. Jiang, Y.H. Song, et al., Chin. Chem. Lett. 35 (2024) 109246. doi: 10.1016/j.cclet.2023.109246

    87. [87]

      C.H. Ou, Y.M. Pan, H.T. Tang, Sci. China Chem. 65 (2022) 1873–1878. doi: 10.1007/s11426-022-1360-3

    88. [88]

      X. Yan, S. Wang, Z. Liu, et al., Sci. China Chem. 65 (2022) 762–770. doi: 10.1007/s11426-021-1210-y

    89. [89]

      Z. Chang, J. Wang, X. Lu, Y. Fu, Chin. J. Org. Chem. 42 (2022) 147–159. doi: 10.6023/cjoc202108006

    90. [90]

      W. Xie, X. Chen, Y. Li, et al., Chin. J. Org. Chem. 42 (2022) 1286–1306. doi: 10.6023/cjoc202110028

    91. [91]

      L. Du, B. Zhang, S. Ji, H. Cai, H. Zhang, Sci. China Chem. 66 (2023) 534–539. doi: 10.1007/s11426-022-1470-8

    92. [92]

      Y.K. Xing, Z.H. Wang, P. Fangm, C. Ma, T.S. Mei, Sci. China Chem. 66 (2023) 2863–2870. doi: 10.1007/s11426-023-1603-9

    93. [93]

      G. Zhong, Y. Huang, L. He, Chem. Synth. 3 (2023) 19.

    94. [94]

      H.Y. Zhou, H.T. Tang, W.M. He, Chin. J. Catal. 46 (2023) 4–10. doi: 10.1016/S1872-2067(22)64197-4

    95. [95]

      Z. Guan, D. Yang, Z. Liu, et al., Chin. J. Catal. 52 (2023) 144–153. doi: 10.1016/S1872-2067(23)64510-3

    96. [96]

      L. Zeng, J.H. Qin, G.F. Lv, et al., Chin. J. Chem. 41 (2023) 1921–1930. doi: 10.1002/cjoc.202300174

    97. [97]

      F. Lian, F. Luo, M. Wang, K. Xu, C. Zeng, Chin. J. Chem. 41 (2023) 1583–1588. doi: 10.1002/cjoc.202200825

    98. [98]

      H. Yue, C. Zhu, M. Rueping, Sci. Bull. 68 (2023) 1730–1732. doi: 10.1016/j.scib.2023.07.028

    99. [99]

      B. Sun, Z.H. Wang, Y.Z. Wang, et al., Sci. Bull. 68 (2023) 2033–2041. doi: 10.1016/j.scib.2023.07.007

    100. [100]

      Z. Tan, Zhang H, K. Xu, C. Zeng, Sci. China Chem. 67 (2024) 450–470.

    101. [101]

      Y. Zhang, X. Zhao, G. Qing, Chem. Synth. 4 (2024) 16.

    102. [102]

      D. Lehnherr, L. Chen, Org. Process Res. Dev. 28 (2024) 338–366. doi: 10.1021/acs.oprd.3c00340

    103. [103]

      R. Matthessen, J. Fransaer, K. Binnemans, D.E. De Vos, Beilstein J. Org. Chem. 10 (2014) 2484–2500. doi: 10.3762/bjoc.10.260

    104. [104]

      L. Rossi, Curr. Green Chem. 2 (2015) 77–89. doi: 10.2174/2213346101666140804222344

    105. [105]

      H. Senboku, A. Katayama, Curr. Opin. Green Sustain. Chem. 3 (2017) 50. doi: 10.1016/j.cogsc.2016.10.003

    106. [106]

      Y. Cao, X. He, N. Wang, H.R. Li, L.N. He, Chin. J. Chem. 36 (2018) 644–659. doi: 10.1002/cjoc.201700742

    107. [107]

      N.W. Kinzel, C. Werlé, W. Leitner, Angew. Chem. Int. Ed. 60 (2021) 11628–11686. doi: 10.1002/anie.202006988

    108. [108]

      H. Senboku, Chem. Rec. 21 (2021) 2354–2374. doi: 10.1002/tcr.202100081

    109. [109]

      Z. Yang, Y. Yu, L. Lai, et al., Green Synth. Catal. 2 (2021) 19–26. doi: 10.1016/j.gresc.2021.01.009

    110. [110]

      S. Wang, T. Feng, Y. Wang, Y. Qiu, Chem. Asian J. 17 (2022) e202200543. doi: 10.1002/asia.202200543

    111. [111]

      X.F. Liu, K. Zhang, L. Tao, X.B. Lu, W.Z. Zhang, Green Chem. Eng. 3 (2022) 125–137. doi: 10.1016/j.gce.2021.12.001

    112. [112]

      S. Jia, X. Ma, X. Sun, B. Han, CCS Chem. 4 (2022) 3213–3229. doi: 10.31635/ccschem.022.202202094

    113. [113]

      G.Q. Yuan, L. Li, H. Jiang, C. Qi, F. Xie, Chin. J. Chem. 28 (2010) 1983–1988. doi: 10.1002/cjoc.201090331

    114. [114]

      A. Alkayal, V. Tabas, S. Montanaro, et al., J. Am. Chem. Soc. 142 (2020) 1780–1785. doi: 10.1021/jacs.9b13305

    115. [115]

      Y. Kim, G.D. Park, M. Balamurugan, et al., Adv. Sci. 7 (2020) 1900137. doi: 10.1002/advs.201900137

    116. [116]

      W. Zhang, S. Lin, J. Am. Chem. Soc. 142 (2020) 20661–20670. doi: 10.1021/jacs.0c08532

    117. [117]

      X.T. Gao, Z. Zhang, X. Wang, et al., Chem. Sci. 11 (2020) 10414–10420. doi: 10.1039/D0SC04091F

    118. [118]

      A.M. Sheta, M.A. Mashaly, S.B. Said, et al., Chem. Sci. 11 (2020) 9109–9114. doi: 10.1039/D0SC03148H

    119. [119]

      A.M. Sheta, A. Alkayal, M.A. Mashaly, et al., Angew. Chem. Int. Ed. 60 (2021) 21832–21837. doi: 10.1002/anie.202105490

    120. [120]

      Y. You, W. Kanna, H. Takano, et al., J. Am. Chem. Soc. 144 (2022) 3685–3695. doi: 10.1021/jacs.1c13032

    121. [121]

      H. Senboku, K. Yoneda, S. Hara, Tetrahedron Lett. 56 (2022) 6772–6776.

    122. [122]

      K.J. Jiao, Z.M. Li, X.T. Xu, et al., Org. Chem. Front. 5 (2018) 2244–2248. doi: 10.1039/C8QO00507A

    123. [123]

      D.T. Yang, M. Zhu, Z.J. Schiffer, et al., ACS Catal. 9 (2019) 4699–4750. doi: 10.1021/acscatal.9b00818

    124. [124]

      J.S. Zhong, Z.X. Yang, C.L. Ding, et al., J. Org. Chem. 86 (2021) 16162–16170. doi: 10.1021/acs.joc.1c01261

    125. [125]

      Y. Wang, S. Tang, G. Yang, et al., Angew. Chem. Int. Ed. 61 (2022) e202207746. doi: 10.1002/anie.202207746

    126. [126]

      K. Zhang, B.H. Ren, X.F. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202207660. doi: 10.1002/anie.202207660

    127. [127]

      Z. Zhao, Y. Liu, S. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202214710. doi: 10.1002/anie.202214710

    128. [128]

      M. Surke, R. Zhao, L. Ackermann, Sci. China Chem. 66 (2023) 1549–1550. doi: 10.1007/s11426-023-1585-6

    129. [129]

      L. Li, N. Fu, Chem 9 (2023) 556–558. doi: 10.1016/j.chempr.2023.02.001

    130. [130]

      O. Sock, M. Troupel, J. Perichon, Tetrahedrn Lett. 26 (1985) 1509–1512. doi: 10.1016/S0040-4039(00)98538-1

    131. [131]

      A.A. Isse, A. Gennaro, E. Vianello, J. Chem. Soc., Dalton Trans. (1996) 1613–1618.

    132. [132]

      W.H. Chung, P. Guo, K.Y. Wong, C.P. Lau, J. Electroanal. Chem. 486 (2000) 32–39. doi: 10.1016/S0022-0728(00)00125-X

    133. [133]

      A. Gennaro, A.A. Isse, F. Maran, J. Electroanal. Chem. 507 (2001) 124–134. doi: 10.1016/S0022-0728(01)00373-4

    134. [134]

      A.A. Isse, M.G. Ferlin, A. Gennaro, J. Electroanal. Chem. 581 (2005) 38–45. doi: 10.1016/j.jelechem.2005.04.007

    135. [135]

      D.F. Niu, L.P. Xiao, A.J. Zhang, et al., Tetrahedron 64 (2008) 10517. doi: 10.1016/j.tet.2008.08.093

    136. [136]

      Y. Hiejima, M. Hayashi, A. Uda, et al., Phys. Chem. Chem. Phys. 12 (2010) 1953–1957. doi: 10.1039/b920413j

    137. [137]

      B.L. Chen, H.W. Zhu, Y. Xiao, et al., Electrochem. Commun. 42 (2014) 55–59. doi: 10.1016/j.elecom.2014.02.009

    138. [138]

      H. Senboku, K. Nagakura, T. Fukuhara, S. Hara, Tetrahedron 71 (2015) 3850–3856. doi: 10.1016/j.tet.2015.04.020

    139. [139]

      H. Yang, L. Wu, H. Wang, J. Lu, Chin. J. Catal. 37 (2016) 994–998. doi: 10.1016/S1872-2067(15)61075-0

    140. [140]

      L.X. Wu, Y.G. Zhao, Y.B. Guan, et al., RSC Adv. 9 (2019) 32628–32633. doi: 10.1039/C9RA05253D

    141. [141]

      N.W.J. Ang, J.C.A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 59 (2020) 12842–12847. doi: 10.1002/anie.202003218

    142. [142]

      L.X. Wu, F.J. Deng, L. Wu, et al., New J. Chem. 45 (2021) 13137–13141. doi: 10.1039/D1NJ02006D

    143. [143]

      M.A. Keane, J. Chem. Technol. Biotechnol. 82 (2007) 787–795. doi: 10.1002/jctb.1757

    144. [144]

      L. Dai, Z.F. Zhang, X.Y. Chen, Sci. China Chem. 67 (2024) 471–481. doi: 10.1007/s11426-023-1787-3

    145. [145]

      P. Li, C. Guo, S. Wang, et al., Nat. Commun. 13 (2022) 3774. doi: 10.1038/s41467-022-31435-9

    146. [146]

      N. Corbin, D.T. Yang, N. Lazouski, K. Steinberg, K. Manthiram, Chem. Sci. 12 (2021) 12365–12376. doi: 10.1039/D1SC02413B

    147. [147]

      C.K. Ran, X.W. Chen, Y.Y. Gui, et al., Sci. China Chem. 63 (2020) 1336–1351. doi: 10.1007/s11426-020-9788-2

    148. [148]

      J.H. Ye, T. Ju, H. Huang, L.L. Liao, D.G. Yu, Acc. Chem. Res. 54 (2020) 2518–2531.

    149. [149]

      C.K. Ran, L.L. Liao, T.Y. Gao, Y.Y. Gui, D.G. Yu, Cur. Opin. Green Sustain. Chem. 32 (2021) 100525. doi: 10.1016/j.cogsc.2021.100525

    150. [150]

      C.K. Ran, H.Z. Xiao, L.L. Liao, et al., Natl. Sci. Open 2 (2023) 20220024. doi: 10.1360/nso/20220024

    151. [151]

      Y.Y. Gui, S.S. Yan, W. Wang, et al., Sci. Bull. 68 (2023) 3124–3128. doi: 10.1016/j.scib.2023.11.018

    152. [152]

      G.Q. Sun, W. Zhang, L.L. Liao, Nat. Commun. 12 (2021) 7086. doi: 10.1038/s41467-021-27437-8

    153. [153]

      L.L. Liao, Z.H. Wang, K.G. Cao, et al., J. Am. Chem. Soc. 144 (2022) 2062–2068. doi: 10.1021/jacs.1c12071

    154. [154]

      W. Zhang, L.L. Liao, L. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202301892. doi: 10.1002/anie.202301892

    155. [155]

      G.Q. Sun, P. Yu, W. Zhang, et al., Nature 615 (2023) 67–72. doi: 10.1038/s41586-022-05667-0

    156. [156]

      C.K. Ran, Q. Qu, Y.Y. Tao, et al., Sci. China Chem. 67 (2024) 3366–3372. doi: 10.1007/s11426-024-2075-6

    157. [157]

      Q. Hu, B. Wei, M. Wang, et al., J. Am. Chem. Soc. 146 (2024) 14864–14874. doi: 10.1021/jacs.4c04211

    158. [158]

      T. Wirtanen, T. Prenzel, J.P. Tessonnier, S.R. Waldvogel, Chem. Rev. 121 (2021) 10241–10270. doi: 10.1021/acs.chemrev.1c00148

    159. [159]

      B. Feng, Y. Guo, X. Liu, Y. Wang, Green Chem. 25 (2023) 8505–8509. doi: 10.1039/D3GC03063F

    160. [160]

      S. Xu, Z. Han, K. Yuan, et al., Nat. Rev. Methods Primers 3 (2023) 44. doi: 10.1038/s43586-023-00227-w

    161. [161]

      L. Lu, W. Li, Y. Cheng, M. Liu, Waste Manage. 166 (2023) 245–258. doi: 10.1016/j.wasman.2023.05.012

    162. [162]

      X.F. Liu, C. Qiao, X.Y. Li, L.N. He, Green Chem. 19 (2017) 1726–1731. doi: 10.1039/C7GC00484B

    163. [163]

      C.M. Hendy, G.C. Smith, Z. Xu, T. Lian, N.T. Jui, J. Am. Chem. Soc. 143 (2021) 8987–8992. doi: 10.1021/jacs.1c04427

  • Scheme 1  Carboxylation of C(sp3)—Cl bonds with CO2.

    Scheme 2  Substrate scope of unactivated alkyl chlorides. The same reaction conditions as Table 1, entry 1. Isolated yields.

    Scheme 3  Carboxylation of PVC. (A) The photo of commercial PVC tube. (B) The photo of modified PVC. (C) Contact angle test image of commercial PVC tube. (D) Contact angle test image of modified PVC.

    Scheme 4  Mechanistic investigation.

    Scheme 5  Proposed reaction mechanism.

    Table 1.  Optimization of the reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  39
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2024-12-15
  • 收稿日期:  2024-05-23
  • 接受日期:  2024-06-06
  • 修回日期:  2024-06-05
  • 网络出版日期:  2024-06-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章