Citation: Anjing Liao, Wei Sun, Yaming Liu, Han Yan, Zhi Xia, Jian Wu. Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides[J]. Chinese Chemical Letters, ;2025, 36(3): 110094. doi: 10.1016/j.cclet.2024.110094 shu

Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides

    * Corresponding authors.
    E-mail addresses: xz8084696@126.com (Z. Xia), jwu6@gzu.edu.cn (J. Wu).
  • Received Date: 7 April 2024
    Revised Date: 20 May 2024
    Accepted Date: 5 June 2024
    Available Online: 6 June 2024

Figures(6)

  • Pyrrole is a heterocycle with four carbon atoms and a nitrogen atom, which is extensively used in the pesticide and pharmaceutical industries. In addition, it has a series of analogs such as pyrrolidine, pyrroline, and pyrrolidone. Pesticides containing pyrrole and its analogs have been formally marketed as fungicides, including fenpiclonil, fludioxonil, the insecticide chlorfenapyr, and the herbicide fluorochloridone. In this paper, we analyze the structure-activity relationships (SARs) of pesticides containing these structures. We summarize the characteristics possessed by the most highly active pyrrole and its analogs and provide an overview of research on pyrrole compounds with insecticidal, antimicrobial, herbicidal, and antiviral properties in the past 20 years. It is hoped to provide ideas for the development and design of this type compounds in pesticides and to assist researchers in this area.
  • 加载中
    1. [1]

      A. Domagala, T. Jarosz, M. Lapkowski, Eur. J. Med. Chem. 100 (2015) 176–187.  doi: 10.1016/j.ejmech.2015.06.009

    2. [2]

      F.M. Tajabadi, M.R. Campitelli, R.J. Quinn, Springer Sci. Rev. 1 (2013) 141–151.  doi: 10.1007/s40362-013-0014-7

    3. [3]

      A.L. Dai, Z.G. Zheng, Y.Q. Huang, et al., Heliyon. 8 (2022) e12391.  doi: 10.1016/j.heliyon.2022.e12391

    4. [4]

      G. Casiraghi, P. Spanu, G. Rassu, L. Pinna, F. Ulgheri, J. Org. Chem. 59 (1994) 2906–2909.  doi: 10.1021/jo00089a044

    5. [5]

      P. Jouin, B. Castro, D. Nisato, J. Chem. Soc., Perkin Trans. 1. (1987) 1177–1182.  doi: 10.1039/P19870001177

    6. [6]

      S.C. Xu, M.G. Jiang, Chin. J. Pestic. Sci. 4 (2002) 1–13.

    7. [7]

      L.G. Copping, J.J. Menn, Pest Manag. Sci. 56 (2000) 651–676.  doi: 10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U

    8. [8]

      E.F. Rogers, F.R. Koniuszy, J.J. Shavel, K. Folkers, J. Am. Chem. Soc. 70 (1948) 3086–3088.  doi: 10.1021/ja01189a074

    9. [9]

      H. Greger, Planta Med. 72 (2006) 99–113.  doi: 10.1055/s-2005-916258

    10. [10]

      W.M. Blaney, M.S.J. Simmonds, S.V. Evans, L.E. Fellows, Entomol. Exp. Appl. 36 (1984) 209–216.  doi: 10.1111/j.1570-7458.1984.tb03430.x

    11. [11]

      M.S.J. Simmonds, W.M. Blaney, L.E. Fellows, J. Chem. Ecol. 16 (1990) 3167–3196.  doi: 10.1007/BF00979618

    12. [12]

      R. Figliuolo, S. Naylor, J. Wang, J.H. Langenheim, Phytochemistry 26 (1987) 3255–3259.  doi: 10.1016/S0031-9422(00)82482-6

    13. [13]

      A.B. Attygalle, E.D. Morgan, Chem. Soc. Rev. 1984, 13(3) 245–278.  doi: 10.1039/cs9841300245

    14. [14]

      J.D. Broadbent, Patent, US4595679 A, 1986.

    15. [15]

      A.B. Attygalle, S.C. Xu, K.D. McCormick, et al., Tetrahedron. 49 (1993) 9333–9342.  doi: 10.1016/0040-4020(93)80019-P

    16. [16]

      J.M. Ligon, D.S. Hill, P.E. Hammer, et al., Pest. Manag. Sci. 56 (2000) 688–695.  doi: 10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V

    17. [17]

      D.S. Hill, J.I. Stein, N.R. Torkewitz, et al., Appl. Environ. Microb. 60 (1994) 78–85.  doi: 10.1128/aem.60.1.78-85.1994

    18. [18]

      M. Koyama, F. Kai, T. Tsuruoka, et al., Patent, EP80051A2, 1983.

    19. [19]

      N. Ezaki, M. Koyama, T. Shomura, T. Tsuruoka, S. Inouye, J. Antibiot. 36 (1983) 1263–1267.  doi: 10.7164/antibiotics.36.1263

    20. [20]

      B. Winblad, Cns Neurosci. Ther. 11 (2006) 169–182.

    21. [21]

      C.F. Caley, S.S. Weber, Ann. Pharmacother. 29 (1995) 152–160.  doi: 10.1177/106002809502900210

    22. [22]

      J.J.V. McMurray, M. Packer, A.S. Desai, et al., New. Engl. J. Med. 371 (2014) 993–1004.  doi: 10.1056/NEJMoa1409077

    23. [23]

      L.J. Yu, A.L. Dai, W. Zhang, et al., J. Agric. Food Chem. 70 (2022) 10693–10707.  doi: 10.1021/acs.jafc.2c02301

    24. [24]

      L.J. Yu, S.X. Guo, Y. Wang, et al., J. Agric. Food Chem. 70 (2022) 15726–15736.  doi: 10.1021/acs.jafc.2c06189

    25. [25]

      P. Sun, Y.Q. Huang, S. Chen, et al., Chin. Chem. Lett. 35 (2024) 109005.  doi: 10.1016/j.cclet.2023.109005

    26. [26]

      P. Sun, Y.Q. Huang, X.Y. Yang, et al., Front. Plant. Sci. 13 (2023) 1120613.  doi: 10.3389/fpls.2022.1120613

    27. [27]

      D.G. Kuhn, V.M. Kamhi, J.A. Furch, et al., J. Pestic. Sci. 41 (1994) 279–286.  doi: 10.1002/ps.2780410312

    28. [28]

      W. Yang, Y. Chen, Y. Zhang, X.B. Gao, Y.F. Zhou, Pestic. Biochem. Phys. 141 (2017) 29–40.  doi: 10.1016/j.pestbp.2016.11.003

    29. [29]

      B.C. Black, R.M. Hollingworth, K.I. Ahammadsahib, C.D. Kukel, S. Donovan, Pestic. Biochem. Phys. 50 (1994) 115–128.  doi: 10.1006/pest.1994.1064

    30. [30]

      S. Periasamy, J.F. Deng, M.Y. Liu, Xenobiotica 47 (2017) 833–835.  doi: 10.1080/00498254.2016.1236300

    31. [31]

      R.W. Addor, S.F. Donovan, R.E. Diehl, Patent, EP484614A, 1992.

    32. [32]

      V. Kameswaran, Patent, EP434940 A2, 1991.

    33. [33]

      D.G. Kuhn, F.S. Donovan, J.A. Furch, Patent, US5286741A, 1994.

    34. [34]

      D.G. Kuhn, F.S. Donovan, J.A. Furch, Patent, US5232980A, 1993.

    35. [35]

      D.G. Kuhn, F.S. Donovan, J.A. Furch, Patent, US5286743A, 1994.

    36. [36]

      V. Kameswaran, Patent, EP530515A1, 1993.

    37. [37]

      D.G. Kuhn, V. Kameswaran, Patent, EP545103A1, 1993.

    38. [38]

      A.P. Liu, X.P. Liu, M. Chen, et al., Patent, CN102584667A, 2012.

    39. [39]

      A. Liu, M. Tang, S. Yu, et al., Sci. China Chem. 56 (2013) 117–123.  doi: 10.1007/s11426-012-4733-4

    40. [40]

      P. Zhou, L.X. Zhang, J.H. Ma, et al., Chin. J. Pestic. Sci. 25 (2023) 340–352.  doi: 10.3390/socsci12060340

    41. [41]

      P. Zhou, J.J. Huang, C.W. He, et al., Chin. J. Pestic. Sci. 24 (2022) 1367–1376.  doi: 10.3390/f13091367

    42. [42]

      P. Zhou, Q.N. Guo, J. You, et al., Agrochemicals 62 (2023) 17–23.

    43. [43]

      G.L. Mao, Y. Yan, Y. Chen, et al., J. Agric. Food Chem. 65 (2017) 6169–6178.  doi: 10.1021/acs.jafc.7b02044

    44. [44]

      Y. Chen, Y. Yan, Z.F. Ren, et al., J. Agric. Food Chem. 66 (2018) 12527–12535.  doi: 10.1021/acs.jafc.8b03591

    45. [45]

      Y. Chen, Z. Lei, Y. Zhang, et al., Molecules, 22 (2017) 1058.  doi: 10.3390/molecules22071058

    46. [46]

      T.X. Li, Y. Chen, H.F. Liu, et al., Molecules, 26 (2021) 4570.  doi: 10.3390/molecules26154570

    47. [47]

      Q.M. Wang, C.H. Mao, Y. Zhao, R.Q. Huang, F.C. Bi, Patent, CN1891688A, 2005.

    48. [48]

      Y. Zhao, Y. Li, X. Ou, et al., J. Agric. Food Chem. 56 (2008) 10176–10182.  doi: 10.1021/jf802464d

    49. [49]

      Y. Zhao, C. Mao, Y.Q. Li, et al., J. Agric. Food Chem. 56 (2008) 7326–7332.  doi: 10.1021/jf801311h

    50. [50]

      H. Dai, Y.Q. Li, D. Du, et al., J. Agric. Food Chem. 56 (2008) 10176–10182.  doi: 10.1021/jf802464d

    51. [51]

      B. Xu, G.C. Ran, Patent, CN105622598 A, 2016.

    52. [52]

      J.L. Sun, Patent, CN102731363 A, 2012.

    53. [53]

      Y.X. Liu, P.X. Zhang, Y.Q. Li, H.B. Song, Q.M. Wang, Mol. Divers. 18 (2014) 593–598.  doi: 10.1007/s11030-014-9515-9

    54. [54]

      Q. Ma, Y. Liu, P. Zhang, et al., J. Agric. Food Chem. 62 (2014) 6072–6081.  doi: 10.1021/jf501377t

    55. [55]

      J.L. Sun, Patent, CN103539716 A, 2014.

    56. [56]

      C.H. Mao, Y. Zhao, Y.Q. Li, et al., Chin. J. Org. Chem. 29 (2009) 929–935.

    57. [57]

      Y. Li, P. Zhang, Q. Ma, et al., Bioorg. Med. Chem. Lett. 22 (2012) 6858–6861.  doi: 10.1016/j.bmcl.2012.09.036

    58. [58]

      S.C. Xu, Q. Wang, J.P. Ni, et al., J. Nanjing Agric. Univ. 27 (2004) 6858–6861.

    59. [59]

      D. Chou, W. Knauf, M. Maier, et al., Patent, US 20070281976 A1, 2007.

    60. [60]

      A.A. Abdelhamid, K.S.M. Salama, A.M. Elsayed, et al., ACS Omega. 7 (2022) 3990–4000.  doi: 10.1021/acsomega.1c05049

    61. [61]

      A. Yutaka; M. Akihiro; Y. Ikki, et al., Patent, WO2018199208 A1, 2018.

    62. [62]

      Á. Cantín, P. Moya, M.A. Miranda, J. Primo, E. Primo-Yúfera, J. Agric. Food Chem. 46 (1998) 4748–4753.  doi: 10.1021/jf9800763

    63. [63]

      H. Zhao, A. Yang, N. Zhang, et al., J. Agric. Food Chem. 68 (2020) 1588–1595.  doi: 10.1021/acs.jafc.9b06755

    64. [64]

      Q. Lu, L. Xu, L. Liu, et al., J. Agric. Food Chem. 69 (2021) 14086–14091.  doi: 10.1021/acs.jafc.1c05385

    65. [65]

      C. Wu, X. Yu, B. Wang, et al., J. Agric. Food Chem. 68 (2020) 9319–9328.  doi: 10.1021/acs.jafc.0c04157

    66. [66]

      Z.M. Li, B.L. Wang, C.C. Wu, L.X. Xiong, N. Yang, Patent, CN 108689988 A, 2018.

    67. [67]

      Y. Zhao, H. Li, P. Sun, et al., Chem. Res. Chin. U. 36 (2020) 1168–1173.  doi: 10.1007/s40242-020-0237-5

    68. [68]

      M. Jun, M. Tetsuya, Y. Daiei, et al., Patent, WO2008128711, 2008.

    69. [69]

      G. Ulrich, M. Jun, M. Tetsuya, et al., Patent, WO2010043315, 2010.

    70. [70]

      M. Jun, H. Mamoru, Y. Daiei, et al., Patent, WO2011080211, 2011.

    71. [71]

      H. Xu, X. Xiao, X.F. Zhao, Y. Guo, X.J. Yao, Bioorg. Med. Chem. Lett. 21 (2011) 4008–4012.  doi: 10.1016/j.bmcl.2011.05.004

    72. [72]

      Y. Guo, L. Fan, J. Wang, et al., Tetrahedron. 69 (2013) 774–781.  doi: 10.1016/j.tet.2012.10.073

    73. [73]

      J. Wang, X. Yu, X. Zhi, H. Xu, Bioorg. Med. Chem. Lett. 24 (2014) 4542–4545.  doi: 10.1016/j.bmcl.2014.07.076

    74. [74]

      M. Doe, Y. Hirai, T. Kinoshita, et al., Chem. Lett. 33 (2004) 714–715.  doi: 10.1246/cl.2004.714

    75. [75]

      H. He, X. Qin, F. Dong, et al., Sci. Rep-Uk. 10 (2020) 17999.  doi: 10.1038/s41598-020-75053-1

    76. [76]

      M. Ito, H. Okui, H. Nakagawa, et al., Biosci. Biotech. Bioch. 66 (2014) 2406–2414.

    77. [77]

      W. Zhang, S.X. Guo, Y. Wang, Y, et al., Front. Plant. Sci. 13 (2022) 1086057.  doi: 10.3389/fpls.2022.1086057

    78. [78]

      Z.G. Zheng, A.L. Dai, Z.C. Jin, Y.R. Chi, J. Wu, J. Agric. Food Chem. 70 (2022) 11019–11030.  doi: 10.1021/acs.jafc.1c08383

    79. [79]

      B. Fu, L. Xie, L.G. Wu, et al., Patent, CN 106243084, 2016.

    80. [80]

      Á. Cantín, P. Moya, M.A. Miranda, J. Primo, E. Primo-Yúfera, J. Agric. Food Chem. 48 (2000) 3682–3688.  doi: 10.1021/jf990948g

    81. [81]

      T. Seitz, M. Füsslein, J.R. Jansen, et al., Patent, WO2003024220, 2003.

    82. [82]

      S. Chen, Y. Zhang, Y. Liu, Q. Wang, J. Agric. Food Chem. 69 (2021) 3601–3606.  doi: 10.1021/acs.jafc.0c05558

    83. [83]

      M. Jun, H. Mamoru, Y. Daiei, et al., Patent, WO2012035011, 2012.

    84. [84]

      Y. Li, Z. Wang, P. Zhang, et al., J. Heterocycl. Chem. 51 (2014) 1410–1414.  doi: 10.1002/jhet.1835

    85. [85]

      S.J. Xue, C.L. Lu, Chin. J. Org. Chem. 28 (2008) 1083–1086.

    86. [86]

      T. Tsze, Patent, US5512537, 1996.

    87. [87]

      T. Tsze, Patent, US5681795, 1997.

    88. [88]

      G. Meazza, F. Bettarini, P.L. Porta, et al., Pest. Manag. Sci. 60 (2004) 1178–1188.  doi: 10.1002/ps.923

    89. [89]

      M. Giovanni; B. Franco; C. Paolo; et al., Patent, EP1061072 A1, 2000.

    90. [90]

      B. Franco, M. Giovanni, C. Paolo, P. Domenico, Patent, WO2002070476A1, 2002

    91. [91]

      R.E. Holm, D.E. Stallard. Weed Sci. 22 (1974) 10–14.  doi: 10.1017/s0043174500036419

    92. [92]

      H. Huang, C.M. Morgan, R.N. Asolkar, M.E. Koivunen, P.G. Marrone, J. Agric. Food Chem. 58 (2010) 9994–10000.  doi: 10.1021/jf102087c

    93. [93]

      D. Uwe, H. Hendrik, L. Stefan, et al., Patent, WO2020064260A1, 2020.

    94. [94]

      M.M. Lay, A.M. Niland, Pestic. Biochem. Phys. 19 (1983) 337–343.  doi: 10.1016/0048-3575(83)90062-7

    95. [95]

      S. Yamato, T. Fusaka, Y. Tanaka, J. Pestic. Sci. 30 (2005) 384–389.  doi: 10.1584/jpestics.30.384

    96. [96]

      G.F. Hao, Y. Zuo, S.G. Yang, G.F. Yang, Chimia (Aarau) 65 (2011) 961.  doi: 10.2533/chimia.2011.961

    97. [97]

      K.M. Moon, E.B. Kwon, B. Lee, C.Y. Kim, Molecules 25 (2020) 2754.  doi: 10.3390/molecules25122754

    98. [98]

      Y. Zou, S.G. Yang, Y.P. Luo, T. Ying, et al., Bioorg. Med. Chem. 21 (2013) 3245–3255.  doi: 10.1016/j.bmc.2013.03.056

    99. [99]

      G.F. Hao, C.G. Zhan, G.F. Yang, Fut. Med. Chem. 6 (2014) 597–599.  doi: 10.4155/fmc.14.29

    100. [100]

      L. Zhang, J. Wan, G.F. Yang, Bioorg. Med. Chem. 12 (2004) 6183–6191.  doi: 10.1016/j.bmc.2004.08.046

    101. [101]

      L.X. Zhao, J.J. Hu, Z.X. Wang, et al., Pestic. Biochem. Phys. 170 (2020) 104684.  doi: 10.1016/j.pestbp.2020.104684

    102. [102]

      L.X. Zhao, J.F. Peng, J.J. Hu, et al., J. Mol. Struct. 1258 (2022) 132670.  doi: 10.1016/j.molstruc.2022.132670

    103. [103]

      M. Ikeguchi, M. Sawaki, H. Yoshii, K. Maeda, Y. Morishima, J. Pestic. Sci. 25 (2000) 107–116.  doi: 10.1584/jpestics.25.107

    104. [104]

      A. Lars, F. Jens, D. Hansjoerg, et al., Patent, WO2022200208A1, 2022.

    105. [105]

      N.D. Davis, U.L. Diener, G. Morgan-Jones, Appl. Environ. Microb. 34 (1977) 155–157.  doi: 10.1128/aem.34.2.155-157.1977

    106. [106]

      S. Chen, Y. Kang, M. Zhang, et al., Environ. Exp. Bot. 112 (2015) 1–15.  doi: 10.1016/j.envexpbot.2014.11.009

    107. [107]

      S. Chen, S. Qiang, Pestic Biochem. Phys. 143 (2017) 252–257.  doi: 10.1016/j.pestbp.2017.01.003

    108. [108]

      S. Chen, X. Xu, X. Dai, C. Yang, S. Qiang, Bba-Bioenerget. 1767 (2007) 306–318.  doi: 10.1016/j.bbabio.2007.02.007

    109. [109]

      Q. Geng, J. Xie, X. Wang, et al., J. Agric. Food Chem. 66 (2018) 12198–12205.  doi: 10.1021/acs.jafc.8b04812

    110. [110]

      S. Qiang, S.G. Cheng, X.B. Dai, Y.F. Dong, Patent, CN 1752075A, 2005.

    111. [111]

      S. Qiang, Q. Yao, Patent, CN 105130871A, 2015.

    112. [112]

      B.F. Han, Q.M. Shi, X.F. Wang, et al., Chin. Chem. Lett. 23 (2012) 1023–1026.  doi: 10.1016/j.cclet.2012.07.002

    113. [113]

      Y.Q. Zhu, X.M. Zou, F.Z. Hu, et al., J. Agric. Food Chem. 53 (2005) 9566–9570.  doi: 10.1021/jf051510l

    114. [114]

      Y.Q. Zhu, C.S. Yao, X.M. Zou, et al., Molecules 10 (2005) 427–434.  doi: 10.3390/10020427

    115. [115]

      Y.Q. Zhu, X.K. Si, X.M. Zou, B. Liu, H.Z. Yang, Chin. J. Org. Chem. 27 (2007) 385–390.

    116. [116]

      Y.Q. Zhu, R. Zhu, Y.W. Yuan, et al., Chin. J. Org. Chem. 30 (2010) 1207–1211.

    117. [117]

      Y.X. Liu, Z.P. Cui, Y.H. Li, Y.C. Gu, Q.M. Wang, J. Heterocycl. Chem. 51 (2014) E209–E215.

    118. [118]

      Y.X. Liu, Z.P. Cui, Y.H. Li, Y.C. Gu, Q.M. Wang, J. Heterocycl. Chem. 51 (2014) E197–E201.

    119. [119]

      X.J. Zhu, L. Huang, X.F. Wang, et al., Chin. J. Org. Chem. 29 (2009) 1784–1789.

    120. [120]

      Z.Y. Zhu, Q.M. Shi, B.F. Han, et al., Bull. Korean Chem. Soc. 31 (2010) 2467–2472.  doi: 10.5012/bkcs.2010.31.9.2467

    121. [121]

      X.F. Wang, T.F. Si, Q.B. Li, et al., Arkivoc. (2010) 31–48.  doi: 10.3998/ark.5550190.0011.203

    122. [122]

      T.F. Si, F.G. Meng, X.F. Wang, et al., Chin. J. Org. Chem. 31 (2011) 521–527.

    123. [123]

      Y.X. Liu, H.P. Zhao, H.B. Song, Y.C. Gu, Q.M. Wang, J. Heterocycl. Chem. 51 (2014) E25–E33.

    124. [124]

      M. Chen, C.W. Geng, L. Han, et al., New J. Chem. 45 (2021) 5621–5630.  doi: 10.1039/d1nj00119a

    125. [125]

      J. Desouza, J. Raaijmakers, FEMS Microbiol. Ecol. 43 (2003) 21–34.  doi: 10.1016/S0168-6496(02)00414-2

    126. [126]

      P. Leroux, C. Lanen, R. Fritz, Pest Manage. Sci. 36 (2006) 255–261.

    127. [127]

      C. Lamberth, Bioact. Heterocycl. Compd. Cl. (2012) 155–162.  doi: 10.1002/9783527664412.ch13

    128. [128]

      C. Pillonel, T. Meyer, Pest Manage. Sci. 49 (1997) 229–236.  doi: 10.1002/(SICI)1096-9063(199703)49:3<229::AID-PS525>3.0.CO;2-T

    129. [129]

      H.L. Xu, J. Su, Z.S. Wang, et al., Chin. J. Org. Chem. 41 (2021) 2560–3570.

    130. [130]

      J.F. Chollet, F. Rocher, C. Jousse, et al., Pest Manage. Sci. 60 (2004) 1063–1072.  doi: 10.1002/ps.906

    131. [131]

      J.F. Chollet, F. Rocher, C. Jousse, et al., Pest Manage. Sci. 61 (2004) 377–382.

    132. [132]

      T.T. Yao, D.X. Xiao, Z.S. Li, et al., J. Agric. Food Chem. 65 (2017) 5397–5403.  doi: 10.1021/acs.jafc.7b01251

    133. [133]

      X.D. An, J. Xiao, B. Qiu, S. Yang, Patent, CN115010641A, 2022.

    134. [134]

      M.Z. Zhang, Y. Zhang, J.Q. Wang, W.H. Zhang, Molecules 21 (2016) 1387.  doi: 10.3390/molecules21101387

    135. [135]

      X. Yu, P. Teng, Y.L. Zhang, et al., Fitoterapia 127 (2018) 387–395.  doi: 10.1016/j.fitote.2018.03.013

    136. [136]

      S.G. Zhang, C.G. Liang, Y.Q. Sun, et al., Mol. Diversity. 23 (2019) 915–925.  doi: 10.1007/s11030-019-09920-z

    137. [137]

      S.G. Zhang, X. Tan, C.G. Liang, W.H. Zhang, J. Heterocycl. Chem. 58 (2021) 450–458.  doi: 10.1002/jhet.4180

    138. [138]

      W.Q. Xu, M. Chen, K.Y. Wang, et al., Molecules 21 (2016) 355.  doi: 10.3390/molecules21030355

    139. [139]

      M. Chen, L. Zhang, A. Lu, et al., Bioorg. Med. Chem. Lett. 30 (2020) 127519.  doi: 10.1016/j.bmcl.2020.127519

    140. [140]

      G.H. Lu, H.B. Chu, M. Chen, C.L. Yang, Chin. Chem. Lett. 25 (2014) 61–64.  doi: 10.1016/j.cclet.2013.10.007

    141. [141]

      K.L. Obydennov, L.A. Khamidullina, A.N. Galushchinskiy, et al., J. Agric. Food Chem. 66 (2018) 6239–6245.  doi: 10.1021/acs.jafc.8b02151

    142. [142]

      C.L. Yang, X.F. Wang, L.L. Feng, et al., Patent, CN 103183628 A, 2013.

    143. [143]

      A. Lu, T. Wang, H. Hui, et al., J. Agric. Food Chem. 66 (2018) 6239–6245.  doi: 10.1021/acs.jafc.8b02151

    144. [144]

      F. Liu, X. Cao, L. Xing, et al., Chem. Biodivers. 20 (2023) e202201103.  doi: 10.1002/cbdv.202201103

    145. [145]

      P.Y. Wang, L. Chen, J. Zhou, et al., J. Saudi Chem. Soc. 21 (2017) 315–323.  doi: 10.1016/j.jscs.2016.10.002

    146. [146]

      J.G. Yang, F.L. Wang, J.H. Bi, et al., Patent, CN103387529A, 2013.

    147. [147]

      L. Mathilde Denise, S. Claudio, D.M. Alain, et al., Patent, WO2015128321A1, 2015.

    148. [148]

      C. Camilla; W. Sebastian Volker; B. Carla; Patent, US20110263431A1 2011.

    149. [149]

      Y.N. Bubnov, Y.Y. Spiridonov, N.Y. Kuznetsov, Russ. Chem. Bull. 67 (2018) 345–358.  doi: 10.1007/s11172-018-2080-0

    150. [150]

      M.G. De los Santos, M. Cua-Basulto, A. Huepalcalco, et al., Molecules 27 (2022) 8466.  doi: 10.3390/molecules27238466

  • 加载中
    1. [1]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    2. [2]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    3. [3]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    4. [4]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    5. [5]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    6. [6]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    7. [7]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    8. [8]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    11. [11]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    12. [12]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    13. [13]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    14. [14]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    15. [15]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    16. [16]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    17. [17]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    18. [18]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    19. [19]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(0)
  • Abstract views(69)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return