-
[1]
J.H. Wee, Renew. Sust. Energ. Rev. 11 (2007) 1720–1738.
doi: 10.1016/j.rser.2006.01.005
-
[2]
K.Y. Shen, S. Park, Y.B. Kim, Int. J. Hydrogen. Energy 45 (2020) 16773–16786.
doi: 10.1016/j.ijhydene.2020.04.147
-
[3]
X. Cheng, Z. Shi, N. Glass, et al., J. Power. Source 165 (2007) 739–756.
doi: 10.1016/j.jpowsour.2006.12.012
-
[4]
B. Shabani, M. Hafttananian, S. Khamani, A. Ramiar, A.A. Ranjbar, J. Power. Source 427 (2019) 21–48.
doi: 10.1016/j.jpowsour.2019.03.097
-
[5]
W.M. Yan, H.S. Chu, Y.L. Liu, F. Chen, J.H. Jang, Int. J. Hydrogen. Energy 36 (2011) 5435–5441.
doi: 10.1016/j.ijhydene.2011.01.158
-
[6]
K. Narusawa, M. Hayashida, Y. Kamiya, et al., JSAE Rev. 24 (2003) 41–46.
doi: 10.1016/S0389-4304(02)00239-4
-
[7]
X.Y. Zhang, H.M. Galindo, H.F. Garces, et al., J. Electrochem. Soc. 157 (2010) B409–B414.
doi: 10.1149/1.3284646
-
[8]
H. Li, H.J. Wang, W.M. Qian, et al., J. Power Sources 196 (2011) 6249–6255.
doi: 10.1016/j.jpowsour.2011.04.018
-
[9]
X.Z. Yuan, H. Li, Y. Yi, et al., Int. J. Hydrogen. Energy 37 (2012) 12464–12473.
doi: 10.1016/j.ijhydene.2012.05.125
-
[10]
International Standard., Hydrogen fuel quality-product specification, ISO 14687, 2019.
-
[11]
International Standard., Hydrogen fuel-product specification and quality assurance-Proton exchange membrane (PEM) fuel cell applications for road vehicles, EN 17124, 2018.
-
[12]
International Standard., Hydrogen Fuel Quality for Fuel Cell Vehicles, SAE J2719, 2020.
-
[13]
H. Meuzelaar, J. Liu, S. Persijn, J.V. Wijk, A.M.H.V.D. Veen, Int. J. Hydrogen. Energy 45 (2020) 34024–34036.
doi: 10.1016/j.ijhydene.2020.09.046
-
[14]
Y. Pan, F.F. Deng, Z. Fang, et al., Chin. Chem. Lett. 32 (2021) 3440–3445.
doi: 10.1016/j.cclet.2021.05.067
-
[15]
S.W. Kim, B.A. Trisna, M. Yin, et al., Int. J. Hydrogen. Energy 48 (2023) 13012–13023.
doi: 10.1016/j.ijhydene.2022.12.233
-
[16]
P.Y. Wang, W.G. Chen, J.X. Wang, et al., Anal. Chem. 95 (2023) 6894–6904.
doi: 10.1021/acs.analchem.3c00066
-
[17]
Z. Noda, K. Hirata, A. Hayashi, et al., Int. J. Hydrogen. Energy 42 (2017) 3281–3293.
doi: 10.1016/j.ijhydene.2016.12.066
-
[18]
R. Mukundan, E.L. Brosha, C.J. Romero, D. Poppe, T. Rockward, J. Electrochem. Soc. 167 (2020) 147507.
doi: 10.1149/1945-7111/abc43a
-
[19]
K. Arrhenius, O. Büker, A. Fischer, S. Persijn, N.D. Moore, Meas. Sci. Technol. 31 (2020) 075010.
doi: 10.1088/1361-6501/ab7cf3
-
[20]
C. Beurey, B. Gozlan, M. Carré, et al., Front. Energy Res. 8 (2020) 615149.
-
[21]
B. Urasinska-Wojcik, J.W. Gardner, IEEE Sens. Lett. 2 (2017) 1–4.
-
[22]
D.Z. Zhang, S.J. Yu, X.W. Wang, et al., J. Hazard. Mater. 423 (2022) 127160.
doi: 10.1016/j.jhazmat.2021.127160
-
[23]
Z.W. Qiu, Y.T. Xue, J.R. Li, et al., Chin. Chem. Lett. 32 (2021) 2807–2811.
doi: 10.1016/j.cclet.2021.02.029
-
[24]
N. Rajalakshmi, T.T. Jayanth, K.S. Dhathathreyan, Fuel Cells 3 (2003) 177–180.
doi: 10.1002/fuce.200330107
-
[25]
F.A. Uribe, S. Gottesfeld, T.A. Zawodzinski, J. Electrochem. Soc. 149 (2002) A293–A296.
doi: 10.1149/1.1447221
-
[26]
F.A. Uribe, T. Zawodzinski, S. Gottesfeld, ECS. PVS. 27 (1998) 229–237.
doi: 10.1149/199827.0229pv
-
[27]
R. Halseid, P.J.S. Vie, R. Tunold, J. Power Sources 154 (2006) 343–350.
doi: 10.1016/j.jpowsour.2005.10.011
-
[28]
A.S. Brown, G.M. Vargha, M.L. Downey, et al., NPL Report AS 64, National Physical Laboratory, Teddington, UK, 2011. Available at https://eprintspublications.npl.co.uk/5212/.
-
[29]
International Standard., Standard Test Method for Determination of Ammonium, Alkali and Alkaline Earth Metals in Hydrogen and Other Cell Feed Gases by Ion Chromatography, ASTM D7550, 2009.
-
[30]
International Standard., Standard Test Method for Hydrogen Purity Analysis Using a Continuous Wave Cavity Ring-Down Spectroscopy Analyzer, ASTM D7941/D7941M, 2023.
-
[31]
International Standard., Standard Test Method for Determination of Trace Gaseous Contaminants In Hydrogen Fuel by Fourier Transform Infrared (FTIR) Spectroscopy, ASTM D7653, 2018.
-
[32]
National standard., Fuel specification for proton exchange membrane fuel cell vehicles—Hydrogen, GB/T 37244, 2018.
-
[33]
National standard., Air Quality—Determination of Ammonia—Ion Selective Electrode Method, GB/T 14669, 1993.
-
[34]
A.A. Stec, P. Fardell, P. Blomqvist, et al., Fire. Saf. J. 46 (2011) 225–233.
doi: 10.1016/j.firesaf.2011.02.004
-
[35]
F. Hase, M. Frey, T. Blumenstock, et al., Atmos. Meas. Tech. 8 (2015) 3059–3068.
doi: 10.5194/amt-8-3059-2015
-
[36]
J. Mohn, M.J. Zeeman, R.A. Werner, W. Eugster, L. Emmenegger, Isot. Environ. Health Stud. 44 (2008) 241–251.
doi: 10.1080/10256010802309731
-
[37]
S. Yamanouchi, K. Strong, O. Colebatch, et al., Environ. Res. Commun. 3 (2021) 051002.
doi: 10.1088/2515-7620/abfa65
-
[38]
International Standard;, Gas Analysis-Preparation of Calibration Gas Mixtures–Part 1: Gravimetric Method For Class I Mixtures, ISO 6142-1, 2015.
-
[39]
Y. Pan, Y.J. Zhang, Z.A. Li, et al., Microchem. J. 156 (2020) 104833.
doi: 10.1016/j.microc.2020.104833
-
[40]
International Standard, Gas Analysis-Analytical Methods For Hydrogen Fuel-Proton Exchange Membrane (PEM) Fuel Cell Applications For Road Vehicles, ISO 21087, 2019.
-
[41]
K. Arrhenius, A. Anna, H. Yaghooby, et al., Analysis of Hydrogen Quality According to Standard ISO/DIS 14687-2 Pre-Study, Energiforsk, Stockholm, Sweden, 2015, p. 177. Report 2015 Available at https://energiforskmedia.blob.core.windows.net/media/18581/analysis-of-hydrogen-quality-energiforskrapport-2015-177.pdf.
-
[42]
T. Bacquart, K. Arrhenius, S. Persijn, et al., J. Power Sources 444 (2019) 227170.
doi: 10.1016/j.jpowsour.2019.227170
-
[43]
L. Dong, J. Wright, B. Peters, et al., Appl. Phys B 107 (2012) 459–467.