Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes
-
* Corresponding author.
E-mail address: jiaozhw@mail.sysu.edu.cn (Z. Jiao).
Citation:
Yunqiang Li, Yongxian Huang, Sinuo Li, He Huang, Zhiwei Jiao. Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes[J]. Chinese Chemical Letters,
;2025, 36(4): 110051.
doi:
10.1016/j.cclet.2024.110051
J.J. Li, Heterocyclic Chemistry in Drug Discovery, Wiley, Hoboken, 2013, pp. 1–720.
S.D. Roughley, A.M. Jordan, J. Med. Chem. 54 (2011) 3451–3479.
doi: 10.1021/jm200187y
M.A. Chiacchio, D. Iannazzo, R. Romeo, S.V. Giofrè, L. Legnani, Curr. Med. Chem. 26 (2019) 7166–7195.
Y. Ling, Z.Y. Hao, D. Liang, et al., Drug Des. Dev. Ther. 15 (2021) 4289–4338.
doi: 10.2147/dddt.s329547
J.J. Gladfelder, S. Ghosh, M. Podunavac, et al., J. Am. Chem. Soc. 141 (2019) 15024–15028.
doi: 10.1021/jacs.9b08659
J.D. Weaver, A. Recio Ⅲ, A.J. Grenning, J.A. Tunge, Chem. Rev. 111 (2011) 1846–1913.
doi: 10.1021/cr1002744
B.M. Trost, Tetrahedron 71 (2015) 5708–5733.
doi: 10.1016/j.tet.2015.06.044
S. Dutta, T. Bhattacharya, D.B. Werz, D. Maiti, Chem 7 (2021) 555–605.
J.A. Tunge, Isr. J. Chem. 60 (2020) 351–359.
doi: 10.1002/ijch.201900177
B.M. Trost, D.A. Thaisrivongs, J. Am. Chem. Soc. 130 (2008) 14092–14093.
doi: 10.1021/ja806781u
B.M. Trost, D.A. Thaisrivongs, J. Am. Chem. Soc. 131 (2009) 12056–12057.
doi: 10.1021/ja904441a
Z.T. He, X. Jiang, J.F. Hartwig, J. Am. Chem. Soc. 141 (2019) 13066–13073.
doi: 10.1021/jacs.9b04440
X.J. Liu, S. Jin, W.Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 2039–2043.
doi: 10.1002/anie.201912882
B.M. Trost, D.A. Thaisrivongs, J. Hartwig, J. Am. Chem. Soc. 133 (2011) 12439–12441.
doi: 10.1021/ja205523e
S.C. Sha, J. Zhang, P.J. Carroll, P.J. Walsh, J. Am. Chem. Soc. 135 (2013) 17602–17609.
doi: 10.1021/ja409511n
S.C. Sha, H. Jiang, J. Mao, et al., Angew. Chem. Int. Ed. 55 (2016) 1070–1074.
doi: 10.1002/anie.201507494
R. Murakami, K. Sano, T. Iwai, et al., Angew. Chem. Int. Ed. 57 (2018) 9465–9469.
doi: 10.1002/anie.201802821
X.J. Liu, S.L. You, Angew. Chem. Int. Ed. 56 (2017) 4002–4005.
doi: 10.1002/anie.201700433
P. Zhang, J. Wang, Z.R. Robertson, T.R. Newhouse, Angew. Chem. Int. Ed. 61 (2022) e202200602.
X.J. Liu, C. Zheng, Y.H. Yang, S. Jin, S.L. You, Angew. Chem. Int. Ed. 58 (2019) 10493–10499.
doi: 10.1002/anie.201904156
N. Wasfy, F. Rasheed, R. Robidas, et al., Chem. Sci. 12 (2021) 1503–1512.
doi: 10.1039/d0sc03304a
R.K. Dhungana, S. Kc, P. Basnet, R. Giri, Chem. Record 18 (2018) 1314–1340.
doi: 10.1002/tcr.201700098
L.M. Wickham, R. Giri, Acc. Chem. Res. 54 (2021) 3415–3437.
doi: 10.1021/acs.accounts.1c00329
B. Tian, P. Chen, G. Liu, Synlett 33 (2022) 927–938.
doi: 10.1055/s-0040-1719898
J.H. Xie, C. Zheng, S.L. You, Angew. Chem. Int. Ed. 60 (2021) 22184–22188.
doi: 10.1002/anie.202107139
K. Aoyagi, H. Nakamura, Y. Yamamoto, J. Org. Chem. 67 (2002) 5977–5980.
doi: 10.1021/jo025747h
P. Tian, C.Q. Wang, S.H. Cai, et al., J. Am. Chem. Soc. 138 (2016) 15869–15872.
doi: 10.1021/jacs.6b11205
A.L. Gant Kanegusuku, J.L. Roizen, Angew. Chem. Int. Ed. 60 (2021) 21116–21149.
doi: 10.1002/anie.202016666
M.W. Campbell, J.S. Compton, C.B. Kelly, G.A. Molander, J. Am. Chem. Soc. 141 (2019) 20069–20078.
doi: 10.1021/jacs.9b08282
L. Pitzer, J.L. Schwarz, F. Glorius, Chem. Sci. 10 (2019) 8285–8291.
doi: 10.1039/c9sc03359a
R.J. Wiles, G.A. Molander, Isr. J. Chem. 60 (2020) 281–293.
doi: 10.1002/ijch.201900166
K. Donabauer, B. König, Acc. Chem. Res. 54 (2021) 242–252.
doi: 10.1021/acs.accounts.0c00620
Y. Shen, Z.Y. Dai, C. Zhang, P.S. Wang, ACS Catal. 11 (2021) 6757–6762.
doi: 10.1021/acscatal.1c01500
D. Imao, A. Itoi, A. Yamazaki, et al., J. Org. Chem. 72 (2007) 1652–1658.
doi: 10.1021/jo0621569
S. Oliver, P.A. Evans, Synthesis 45 (2013) 3179–3198.
Y. Wang, J. Chen, J. Yang, Z. Jiao, C.Y. Su, Angew. Chem. Int. Ed. 62 (2023) e202303288.
B.M. Trost, Z. Jiao, H. Gholami, Chem. Sci. 12 (2021) 10532–10537.
doi: 10.1039/d1sc02599f
J.P. Phelan, S.B. Lang, J.S. Compton, et al., J. Am. Chem. Soc. 140 (2018) 8037–8047.
doi: 10.1021/jacs.8b05243
F.D. Lu, G.F. He, L.Q. Lu, W.J. Xiao, Green Chem. 23 (2021) 5379–5393.
doi: 10.1039/d1gc00993a
Y.J. Zhang, H. Wang, D.D. Jiang, et al., Green Synth. Catal. 5 (2024) 35–41.
B. Giese, Angew. Chem. Int. Ed. 22 (1983) 753–764.
Y.L. Yin, Y.T. Dai, H.S. Jia, et al., J. Am. Chem. Soc. 140 (2018) 6083–6087.
doi: 10.1021/jacs.8b01575
K. Cao, S.M. Tan, R. Lee, et al., J. Am. Chem. Soc. 141 (2019) 5437–5443.
doi: 10.1021/jacs.9b00286
Y.L. Yin, Y.Q. Li, T.P. Gonçalves, et al., J. Am. Chem. Soc. 142 (2020) 19451–19456.
doi: 10.1021/jacs.0c08329
M. Kong, Y. Tan, X. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 4024–4031.
doi: 10.1021/jacs.1c01073
X. Chai, X. Hu, X. Zhao, et al., Angew. Chem. Int. Ed. 61 (2022) e202115110.
L. Song, D.M. Fu, L. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 21121–21128.
doi: 10.1002/anie.202008630
A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950–8958.
doi: 10.1002/anie.201202624
S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (2012) 234–238.
doi: 10.1038/nature11687
J. Luo, J. Zhang, ACS Catal. 6 (2016) 873–877.
doi: 10.1021/acscatal.5b02204
N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.
doi: 10.1016/j.cclet.2020.11.034
B.M. Trost, T.M. Lam, J. Am. Chem. Soc. 134 (2012) 11319–11321.
doi: 10.1021/ja305717r
R. Abrams, J. Clayden, Angew. Chem. Int. Ed. 59 (2020) 11600–11606.
doi: 10.1002/anie.202003632
A.E. Goetz, N.K. Garg, Nat. Chem. 5 (2013) 54–60.
doi: 10.1038/nchem.1504
J. Choi, G. Laudadio, E. Godineau, P.S. Baran, J. Am. Chem. Soc. 143 (2021) 11927–11933.
doi: 10.1021/jacs.1c05278
G. Scapin, S.B. Patel, J.W. Becker, et al., Biochemistry 42 (2003) 11451–11459.
doi: 10.1021/bi035098j
A.L. Rodd, K. Ververis, T.C. Karagiannis, Clin. Med. Insights Oncol. 6 (2012) 305–314.
M. Kljajic, J.G. Puschnig, H. Weber, R. Breinbauer, Org. Lett. 19 (2017) 126–129.
doi: 10.1021/acs.orglett.6b03407
W. Zhang, X.X. Xiang, J. Chen, et al., Nat. Commun. 11 (2020) 638.
doi: 10.1007/978-3-030-43309-3_92
S.B. Lang, K.M. O’Nele, J.A. Tunge, J. Am. Chem. Soc. 136 (2014) 13606–13609.
doi: 10.1021/ja508317j
H.H. Zhang, J.J. Zhao, S. Yu, J. Am. Chem. Soc. 140 (2018) 16914–16919.
doi: 10.1021/jacs.8b10766
W. Zhou, Y. Jiang, L. Chen, K. Liu, D. Yu, Chin. J. Org. Chem. 40 (2020) 3697–3713.
doi: 10.6023/cjoc202004045
E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274.
doi: 10.1021/jm501100b
Y. Yasu, T. Koike, M. Akita, Adv. Synth. Catal. 354 (2012) 3414–3420.
doi: 10.1002/adsc.201200588
G.A. Molander, J. Org. Chem. 80 (2015) 7837–7848.
doi: 10.1021/acs.joc.5b00981
J. Wang, X. Liu, Z. Wu, et al., Chin. Chem. Lett. 32 (2021) 2777–2781.
doi: 10.1016/j.cclet.2021.03.011
D.M. Kitcatt, S. Nicolle, A.L. Lee, Chem. Soc. Rev. 51 (2022) 1415–1453.
doi: 10.1039/d1cs01168e
S. Jana, Z. Yang, F. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 5562–5566.
doi: 10.1002/anie.201915161
W.M. Cheng, R. Shang, H.Z. Yu, Y. Fu, Chem. Eur. J. 21 (2015) 13191–13195.
doi: 10.1002/chem.201502286
H.S. Tan, A.S. Habib, J. Pain Res. 14 (2021) 969–979.
doi: 10.2147/jpr.s278279
E.R. Viscusi, F. Skobieranda, D.G. Soergel, et al., J. Pain Res. 12 (2019) 927–943.
doi: 10.2147/jpr.s171013
X.T. Chen, P. Pitis, G. Liu, et al., J. Med. Chem. 56 (2013) 8019–8031.
doi: 10.1021/jm4010829
D. Yamashita, D. Gotchev, P. Pitis, et al., Patent, WO2012129495 A1, 2012.
J.D. Violin, D.G. Soergel, Patent, WO2017106547 A1, 2017.
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251