Citation: Lu-Lu He, Lan-Tu Xiong, Xin Wang, Yu-Zhen Li, Jia-Bao Li, Yu Shi, Xin Deng, Zi-Ning Cui. Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria[J]. Chinese Chemical Letters, ;2025, 36(4): 110044. doi: 10.1016/j.cclet.2024.110044 shu

Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria

    * Corresponding authors.
    E-mail addresses: yushi201503@163.com (Y. Shi), ziningcui@scau.edu.cn (Z.-N. Cui).
    1 These authors contributed equally to this work.
  • Received Date: 14 March 2024
    Revised Date: 19 May 2024
    Accepted Date: 22 May 2024
    Available Online: 23 May 2024

Figures(31)

  • Plant bacterial diseases have inflicted substantial economic losses in global crop, fruit, and vegetable production. The conventional methods for managing these diseases typically rely on the application of antibiotics. However, these antibiotics often target the growth factors of the pathogenic bacteria, leading to the accumulation and emergence of drug-resistant strains, which exacerbates antibiotic resistance. Innovative methods are urgently needed to treat and prevent the toxicity caused by these pathogenic bacteria. Targeting virulence mechanisms in pathogens is a globally recognized and effective strategy for mitigating bacterial resistance. Type III secretion system (T3SS) serves as a crucial virulence determinant in Gram-negative pathogens, and its non-essentials for pathogen growth renders it an ideal target. Targeting the T3SS holds significant potential to alleviate selective pressure for resistance mutations in pathogens. Therefore, targeting T3SS in pathogenic bacteria, while preserving their growth, has emerged as a novel avenue for the development of antimicrobial drugs. In recent years, a multitude of small molecular inhibitors targeting T3SS have been identified. This article offers a comprehensive review of T3SS inhibitors in plant pathogens, while also presenting the latest research advancements in this research direction.
  • 加载中
    1. [1]

      A. Mohammad-Razdari, D. Rousseau, A. Bakhshipour, et al., Biosens. Bioelectron. 201 (2022) 113953.

    2. [2]

      J. Shi, N. Luo, M. Ding, et al., Chin. Chem. Lett. 31 (2020) 434–438.

    3. [3]

      H. Cao, Y. Yang, X. Chen, et al., Chin. Chem. Lett. 31 (2020) 1887–1889.

    4. [4]

      A. Laine, Curr. Biol. 33 (2023) 574–583.

    5. [5]

      G.W. Sundin, L.F. Castiblanco, X. Yuan, et al., Mol. Plant Pathol. 17 (2016) 1506–1518.  doi: 10.1111/mpp.12436

    6. [6]

      Y. Zheng, T. Zhang, P. Wang, et al., Chin. Chem. Lett. 28 (2017) 253–256.

    7. [7]

      F. Vailleau, S. Genin, Annu. Rev. Phytopathol. 61 (2023) 25–47.  doi: 10.1146/annurev-phyto-021622-104551

    8. [8]

      S. Braun, G. Dilarri, L.C. de Lencastre Novaes, et al., Adv. Funct. Mater. 34 (2024) 2305646.

    9. [9]

      Z. Liang, L. Huang, F. He, et al., Mbio 10 (2019) e00713–e00719.

    10. [10]

      Y. Shi, Z. Zhang, J. Shao, et al., Chin. Chem. Lett. 35 (2024) 108794.

    11. [11]

      W. Huang, P. Reyes-Caldas, M. Mann, et al., Mol. Plant. 13 (2020) 1379–1393.

    12. [12]

      A.O. Charkowski, Annu. Rev. Phytopathol. 56 (2018) 269–288.  doi: 10.1146/annurev-phyto-080417-045906

    13. [13]

      X. Xin, B. Kvitko, S.Y. He, Nat. Rev. Microbiol. 16 (2018) 316–328.  doi: 10.1038/nrmicro.2018.17

    14. [14]

      Y. Wang, S. Guo, L. Yu, et al., Chin. Chem. Lett. 35 (2024) 108207.

    15. [15]

      X. Wang, X. Fu, M. Chen, et al., Chin. Chem. Lett. 30 (2019) 1419–1422.

    16. [16]

      Q. Wang, H. Song, Q. Wang, Chin. Chem. Lett. 33 (2022) 626–642.

    17. [17]

      K.M. Bocian-Ostrzycka, M.J. Grzeszczuk, A.M. Banas, et al., Appl. Microbiol. ´ Biotechnol. 101 (2017) 3977–3989.  doi: 10.1007/s00253-017-8291-8

    18. [18]

      V.M. D'Costa, C.E. King, L. Kalan, et al., Nature 477 (2011) 457–461.  doi: 10.1038/nature10388

    19. [19]

      D.A. Rasko, V. Sperandio, Nat. Rev. Drug Discov. 9 (2010) 117–128.  doi: 10.1038/nrd3013

    20. [20]

      Y. Zhu, P. Li, C. Liu, et al., Chin. Chem. Lett. 34 (2023) 107543.

    21. [21]

      H. Yao, L. Cui, H. Liu, et al., Chin. Chem. Lett. 35 (2024) 108511.

    22. [22]

      N. Kurt Yilmaz, C.A. Schiffer, Chem. Rev. 121 (2021) 3235–3237.

    23. [23]

      U. Theuretzbacher, K. Outterson, A. Engel, et al., Nat. Rev. Microbiol. 18 (2020) 275–285.  doi: 10.1038/s41579-019-0288-0

    24. [24]

      X.Y. Chen, S.H. Zhuang, W.Y. Yan, et al., Chin. Chem. Lett. 35 (2024) 109635.  doi: 10.1016/j.cclet.2024.109635

    25. [25]

      Y. Li, Y. Wang, Y. Luo, et al., Chin. Chem. Lett. 35 (2024) 109576.  doi: 10.1016/j.cclet.2024.109576

    26. [26]

      D.A. Gray, M. Wenzel, ACS Infect. Dis. 6 (2020) 1346–1365.  doi: 10.1021/acsinfecdis.0c00001

    27. [27]

      W. Fu, X. Hu, Q. Yuan, et al., Chin. Chem. Lett. 34 (2023) 108064.

    28. [28]

      J. Vila, J. Moreno-Morales, C. Ballesté-Delpierre, Clin. Microbiol. Infect. 26 (2020) 596–603.

    29. [29]

      V. Soheili, A.S. Tajani, R. Ghodsi, et al., Eur. J. Med. Chem. 172 (2019) 26–35.

    30. [30]

      S. Li, P.H.M. Leung, X. Xu, et al., Chin. Chem. Lett. 29 (2018) 313–316.

    31. [31]

      C. Feng, Y. Huang, W. He, et al., ACS Central Sci. 5 (2019) 1278–1288.  doi: 10.1021/acscentsci.9b00452

    32. [32]

      P. Zhang, W. Chen, Y.C. Ma, et al., J. Med. Chem. 66 (2023) 8441–8463.  doi: 10.1021/acs.jmedchem.2c01866

    33. [33]

      J. Sanchez-Garrido, D. Ruano-Gallego, J.S. Choudhary, et al., Trend. Microbiol. 30 (2022) 524–533.

    34. [34]

      A. Anantharajah, M. Mingeot-Leclercq, F. Van Bambeke, Trends Pharmacol. Sci. 37 (2016) 734–749.

    35. [35]

      P. Keyser, M. Elofsson, S. Rosell, et al., J. Intern. Med. 264 (2008) 17–29.  doi: 10.1111/j.1365-2796.2008.01941.x

    36. [36]

      T.L. Archuleta, B.W. Spiller, PLoS Pathog. 10 (2014) e1004498.  doi: 10.1371/journal.ppat.1004498

    37. [37]

      D. Hajra, A.V. Nair, D. Chakravortty, Phys. Life Rev. 38 (2021) 25–54.

    38. [38]

      A. Diepold, E. Sezgin, M. Huseyin, et al., Nat. Commun. 8 (2017) 15940.

    39. [39]

      W. Deng, N.C. Marshall, J.L. Rowland, et al., Nat. Rev. Microbiol. 15 (2017) 323–337.  doi: 10.1038/nrmicro.2017.20

    40. [40]

      Y. Sun, X. Shao, Y. Zhang, et al., Cell Biosci. 12 (2022) 147.  doi: 10.1007/s11631-021-00516-9

    41. [41]

      M. Chen, W. Zhang, L. Han, et al., Mol. Plant Pathol. 23 (2022) 679–692.  doi: 10.1111/mpp.13189

    42. [42]

      Z. Cui, R.B. Huntley, N.P. Schultes, et al., Mol. Plant Microbe Interact. 34 (2021) 1119–1127.  doi: 10.1094/mpmi-06-21-0152-r

    43. [43]

      L.J. Worrall, D.D. Majewski, N.C.J. Strynadka, Annu. Rev. Microbiol. 77 (2023) 669–698.  doi: 10.1146/annurev-micro-032521-025503

    44. [44]

      C.K. Yip, N.C.J. Strynadka, Trend. Biochem. Sci. 31 (2006) 223–230.

    45. [45]

      I. Fishov, S. Namboodiri, Nat. Commun. 14 (2023) 1973.

    46. [46]

      S. Dey, A. Chakravarty, P.G. Biswas, et al., Protein Sci. 28 (2019) 223–230.

    47. [47]

      T. Kubori, Y. Matsushima, D. Nakamura, et al., Science 280 (1998) 602–605.

    48. [48]

      K. Sekiya, M. Ohishi, T. Ogino, et al., Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 11638–11643.

    49. [49]

      A. Collmer, J.L. Badel, A.O. Charkowski, et al., Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 8770–8777.

    50. [50]

      E. Weber, R. Koebnik, J. Bacteriol. 188 (2006) 1405–1410.

    51. [51]

      F. Van Gijsegem, J. Vasse, R. De Rycke, et al., Mol. Microbiol. 44 (2002) 935–946.

    52. [52]

      D. BuÈttner, U. Bonas, EMBO J. 21 (2002) 5313–5322.

    53. [53]

      J.R. Alfano, A. Collmer, J. Bacteriol. 179 (1997) 5655–5662.  doi: 10.1128/jb.179.18.5655-5662.1997

    54. [54]

      J.H. Ham, D.W. Bauer, D.E. Fouts, et al., Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 10206–10211.

    55. [55]

      P.B. Lindgren, Annu. Rev. Phytopathol. 35 (1997) 129–152.

    56. [56]

      D. Gürlebeck, F. Thieme, U. Bonas, J. Plant Physiol. 163 (2006) 233–255.

    57. [57]

      A. Duque-Jaramillo, N. Ulmer, S. Alseekh, et al., New Phytol. 240 (2023) 1961–1975.  doi: 10.1111/nph.19241

    58. [58]

      J. Jayaraman, M. Yoon, L.M. Hemara, et al., New Phytol. 238 (2023) 1605–1619.  doi: 10.1111/nph.18848

    59. [59]

      J.B. Li, L.T. Xiong, Y.R. Lu, et al., Pest Manag. Sci. 79 (2023) 3666–3675.  doi: 10.1002/ps.7545

    60. [60]

      X. Tang, Y. Xiao, J. Zhou, Mol. Plant Microb. Interact. 19 (2006) 1159–1166.

    61. [61]

      Y. Xie, X. Shao, X. Deng, Environ. Microbiol. 21 (2019) 4465–4477.  doi: 10.1111/1462-2920.14779

    62. [62]

      Y. Xiao, S.W. Hutcheson, J. Bacteriol. 176 (1994) 3089–3091.  doi: 10.1128/jb.176.10.3089-3091.1994

    63. [63]

      J. Huang, C. Yao, Y. Sun, et al., Comput. Struct. Biotechnol. J. 20 (2022) 6259–6270.

    64. [64]

      Y. Xie, W. Liu, X. Shao, et al., Comput. Struct. Biotechnol. J. 18 (2020) 3415–3424.

    65. [65]

      X. Zhang, M. Zhao, J. Yan, et al., Front. Microbiol. 9 (2018) 507.

    66. [66]

      K. Wengelnik, G. Ackerveken, U. Bonas, Mol. Plant Microb. Interact. 9 (1996) 704–712.

    67. [67]

      S. Fan, F. Tian, J. Li, et al., Mol. Plant Pathol. 18 (2017) 555–568.  doi: 10.1111/mpp.12415

    68. [68]

      D. Teper, S.S. Pandey, N. Wang, Microorganisms 9 (2021) 187.  doi: 10.3390/microorganisms9010187

    69. [69]

      N.G. Naga, D.E. El-Badan, K.M. Ghanem, et al., Cell Commun. Signal. 21 (2023) 133.

    70. [70]

      M. Kumar, S. Jaiswal, K.K. Sodhi, et al., Environ. Int. 124 (2019) 448–461.

    71. [71]

      M. Garland, S. Loscher, M. Bogyo, Chem. Rev. 117 (2017) 4422–4461.  doi: 10.1021/acs.chemrev.6b00676

    72. [72]

      X. Chen, J. Xue, X. Dong, et al., Appl. Environ. Microbiol. 89 (2023) e102823.

    73. [73]

      S. Alharthi, S.E. Alavi, P.M. Moyle, et al., Drug Discov. Today 26 (2021) 2164–2172.

    74. [74]

      A. Vashistha, N. Sharma, Y. Nanaji, et al., Bioorg. Chem. 136 (2023) 106551.

    75. [75]

      V.C. Kalia, S.K.S. Patel, Y.C. Kang, et al., Biotechnol. Adv. 37 (2019) 68–90.

    76. [76]

      L.N. Silva, K.R. Zimmer, A.J. Macedo, et al., Chem. Rev. 116 (2016) 9162–9236.  doi: 10.1021/acs.chemrev.6b00184

    77. [77]

      X. Liu, Y. Liu, X. Zhao, et al., Gut Microb. 16 (2024) 2316932.

    78. [78]

      H. Guo, E.J. Geddes, T.J. Opperman, et al., ACS Infect. Dis. 9 (2023) 2652–2664.  doi: 10.1021/acsinfecdis.3c00482

    79. [79]

      Y. Zhang, Y. Liu, B. Zhang, et al., Food Funct. 13 (2022) 9761–9771.  doi: 10.1039/d2fo00908k

    80. [80]

      H.A. Pendergrass, A.E. May, Antibiotics 8 (2019) 162.  doi: 10.3390/antibiotics8040162

    81. [81]

      Q. Xu, H. Deng, X. Li, et al., Front. Chem. 9 (2021) 650569.

    82. [82]

      Z. Lin, D. Chen, W. Liu, Sci. China Chem. 59 (2016) 1175–1187.  doi: 10.1007/s11426-016-0062-x

    83. [83]

      D. Cai, X. Li, J. Chen, et al., Food Chem. 366 (2022) 130611.

    84. [84]

      H. Yao, J. Liu, S. Xu, et al., Expert. Opin. Drug Discov. 12 (2017) 121–140.  doi: 10.1080/17460441.2016.1272757

    85. [85]

      K. Li, Y. Zhu, W. Yan, et al., PLoS Pathog. 15 (2019) e1007673.  doi: 10.1371/journal.ppat.1007673

    86. [86]

      H.B. Felise, H.V. Nguyen, R.A. Pfuetzner, et al., Cell Host Microb 4 (2008) 325–336.

    87. [87]

      Y. Li, Q. Peng, D. Selimi, et al., Appl. Environ. Microbiol. 75 (2009) 1223–1228.

    88. [88]

      S. Yang, Q. Peng, F.M. San, et al., PLoS One 3 (2008) e2973.  doi: 10.1371/journal.pone.0002973

    89. [89]

      Y. Li, W. Hutchins, X. Wu, et al., Mol. Plant Pathol. 16 (2015) 150–163.

    90. [90]

      A. Hu, M. Hu, S. Chen, et al., Front. Microbiol. 13 (2022) 839025.

    91. [91]

      D. Khokhani, C. Zhang, Y. Li, et al., Appl. Environ. Microbiol. 79 (2013) 5424–5436.

    92. [92]

      F. Yang, S.S. Korban, P.L. Pusey, et al., Mol. Plant Pathol. 15 (2014) 44–57.  doi: 10.1111/mpp.12064

    93. [93]

      X. Yuan, G.W. Sundin, Q. Zeng, et al., Phytopathology 113 (2023) 2197–2204.  doi: 10.1094/phyto-04-23-0111-sa

    94. [94]

      X. Xiang, H. Tao, S. Jiang, et al., Pest. Biochem. Physiol. 149 (2018) 89–97.

    95. [95]

      H. Tao, S. Fan, S. Jiang, et al., Int. J. Mol. Sci. 20 (2019) 971.  doi: 10.3390/ijms20040971

    96. [96]

      H. Tao, H. Tian, S. Jiang, et al., Bioorg. Med. Chem. 27 (2019) 3364–3371.

    97. [97]

      H. Tao, H. Tian, S. Jiang, et al., Pest. Biochem. Physiol. 160 (2019) 87–94.

    98. [98]

      S. Jiang, H. Li, W. Ahmed, et al., Front. Microbiol. 10 (2019) 1874.

    99. [99]

      S. Jiang, M. He, X. Xiang, et al., J. Agric. Food Chem. 67 (2019) 11867–11876.  doi: 10.1021/acs.jafc.9b04085

    100. [100]

      Y. Ma, L. Chen, N. Si, et al., Front. Plant Sci. 10 (2019) 1059.

    101. [101]

      L. Zhou, C. Wang, G. Wang, et al., Appl. Environ. Microbiol. 86 (2020) e2319–e2349.

    102. [102]

      D. Gao, H. Li, J. Shao, et al., J. Agric. Food Chem. 71 (2023) 9291–9301.  doi: 10.1021/acs.jafc.3c00838

    103. [103]

      X. Wang, L. He, Y. Zhang, et al., J. Agric. Food Chem. 71 (2023) 15971–15980.  doi: 10.1021/acs.jafc.3c05212

    104. [104]

      J. Zhu, J. Gao, C. Yang, et al., J. Agric. Food Chem. 68 (2020) 2306–2315.  doi: 10.1021/acs.jafc.9b06793

    105. [105]

      Y. Chen, H. Liu, S. Zhang, et al., J. Agric. Food Chem. 69 (2021) 1259–1271.  doi: 10.1021/acs.jafc.0c06480

    106. [106]

      J. Shao, Z. Zhang, Y. Shi, J. Agric. Food Chem. 72 (2024) 6988–6997.  doi: 10.1021/acs.jafc.4c00214

    107. [107]

      J.E. Kang, B.J. Jeon, M.Y. Park, et al., Pest Manag. Sci. 76 (2020) 2294–2303.  doi: 10.1002/ps.5764

    108. [108]

      W. Wang, J. Yang, J. Zhang, et al., Cell Host Microb. 27 (2020) 601–613.  doi: 10.3390/s20030601

    109. [109]

      L. He, X. Wang, D. O'Neill Rothenberg, et al., Pest. Biochem. Physiol. 194 (2023) 105471.

    110. [110]

      M. Puigvert, M. Solé, B. López Garcia, et al., Mol. Plant Pathol. 20 (2019) 20–32.  doi: 10.1111/mpp.12736

    111. [111]

      L. Yang, S. Li, X. Qin, et al., Front. Microbiol. 8 (2017) 1234.  doi: 10.1111/1556-4029.13389

    112. [112]

      D. Wu, W. Ding, Y. Zhang, et al., Front. Microbiol. 6 (2015) 1466.

    113. [113]

      Y. Zhang, J. Li, W. Zhang, et al., Front. Plant Sci. 8 (2017) 1595.

    114. [114]

      Q.Q. Guo, Y.Z. Li, H.B. Shi, et al., Pest Manag. Sci. 79 (2023) 4626–4634.

  • 加载中
    1. [1]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    2. [2]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    3. [3]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    4. [4]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    5. [5]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    6. [6]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    7. [7]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    8. [8]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    9. [9]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    10. [10]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    11. [11]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    12. [12]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    13. [13]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    14. [14]

      Zhipeng LiQincong FengJianliang Shen . A β-lactamase-activatable photosensitizer for the treatment of resistant bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109602-. doi: 10.1016/j.cclet.2024.109602

    15. [15]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    16. [16]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    17. [17]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    18. [18]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    19. [19]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    20. [20]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

Metrics
  • PDF Downloads(1)
  • Abstract views(61)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return