Wafer-level GaN-based nanowires photocatalyst for water splitting
-
* Corresponding authors.
E-mail addresses: wanglonglu@njupt.edu.cn (L. Wang), iamqzhao@njupt.edu.cn (Q. Zhao).
Citation:
Kun Wang, Jiaxuan Qiu, Zefei Wu, Yang Liu, Yongqi Liu, Xiangpeng Chen, Bao Zang, Jianmei Chen, Yunchao Lei, Longlu Wang, Qiang Zhao. Wafer-level GaN-based nanowires photocatalyst for water splitting[J]. Chinese Chemical Letters,
;2025, 36(3): 109993.
doi:
10.1016/j.cclet.2024.109993
S. Li, K. Dong, M. Cai, et al., eScience 4 (2023) 100208.
C. Wang, C. You, K. Rong, et al., Acta Phys. Chim. Sin. 39 (2023) 2212053.
K. Dong, C. Shen, R. Yan, et al., Acta Phys. Chim. Sin. 40 (2023) 2310013.
doi: 10.3866/pku.whxb202310013
H. Gong, X. Zhang, G. Wang, et al., Mol. Catal. 485 (2020) 110832.
doi: 10.1016/j.mcat.2020.110832
S.S. Tak, O. Shetye, O. Muley, et al., Int. J. Hydrogen Energy 47 (2022) 37282–37301.
doi: 10.1016/j.ijhydene.2022.06.225
Q. Luo, S. Yin, X. Sun, et al., Appl. Surf. Sci. 609 (2023) 155400.
doi: 10.1016/j.apsusc.2022.155400
S. Han, S. Noh, Y.T. Yu, et al., ACS Appl. Mater. Interfaces 12 (2020) 58028–58037.
doi: 10.1021/acsami.0c17811
X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603–2636.
doi: 10.1039/C5CS00838G
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387–399.
doi: 10.1038/s41929-019-0242-6
T. Ishaq, M. Yousaf, I.A. Bhatti, et al., Int. J. Hydrogen Energy 46 (2021) 39036–39057.
doi: 10.1016/j.ijhydene.2021.09.165
C. Zhang, C. Xie, Y. Gao, et al., Angew. Chem. 134 (2022) e202204108.
doi: 10.1002/ange.202204108
C. Zhang, C. Xie, Y. Gao, et al., Angew. Chem. Int. Ed. Engl. 61 (2022) e202204108.
doi: 10.1002/anie.202204108
J. Kosco, S. Gonzalez-Carrero, C.T. Howells, et al., Nat. Energy 7 (2022) 340–351.
doi: 10.1038/s41560-022-00990-2
R. Shwetharani, H.R. Chandan, M. Sakar, et al., Int. J. Hydrogen Energy 45 (2020) 18289–18308.
doi: 10.1016/j.ijhydene.2019.03.149
K. Khan, X. Tao, M. Shi, et al., Adv. Funct. Mater. 30 (2020) 2003731.
doi: 10.1002/adfm.202003731
A. Abdullah, F. Tariq, M.A. Kulkarni, et al., Mat. Today Phys. 36 (2023) 101165.
doi: 10.1016/j.mtphys.2023.101165
K.T. Fountaine, H.J. Lewerenz, H.A. Atwater, et al., Nat. Commun. 7 (2016) 13706.
doi: 10.1038/ncomms13706
W.-H. Cheng, M.H. Richter, M.M. May, et al., ACS Energy Lett. 3 (2018) 1795–1800.
doi: 10.1021/acsenergylett.8b00920
B. AlOtaibi, H.P. Nguyen, S. Zhao, et al., Nano Lett. 13 (2013) 4356–4361.
doi: 10.1021/nl402156e
N. Anbarasan, S. Sadhasivam, M. Mukilan, et al., Nanotechnology 31 (2020) 425405.
doi: 10.1088/1361-6528/aba211
L. Ravi, K. Boopathi, P. Panigrahi, et al., Appl. Surf. Sci. 449 (2018) 213–220.
doi: 10.1016/j.apsusc.2018.01.306
V. Ganesh, A. Pandikumar, M. Alizadeh, et al., Int. J. Hydrogen Energy 45 (2020) 8198–8222.
doi: 10.1016/j.ijhydene.2020.01.048
N. Han, P. Liu, J. Jiang, et al., J. Mater. Chem. A 6 (2018) 19912–19933.
doi: 10.1039/c8ta06529b
Y. Abbas, Z. Zuhra, N. Akhtar, et al., ACS Appl. Energy Mater. 1 (2018) 3529–3536.
doi: 10.1021/acsaem.8b00346
E. Butanovs, A. Kuzmin, S. Piskunov, et al., Appl. Surf. Sci. 536 (2021) 147841.
doi: 10.1016/j.apsusc.2020.147841
A. Abdullah, I.V. Bagal, A. Waseem, et al., Mat. Today Phys. 28 (2022) 100846.
doi: 10.1016/j.mtphys.2022.100846
K. Sivula, R. van de Krol, Nat. Rev. Mater. 1 (2016) 1–16.
B. Zhou, X. Kong, S. Vanka, et al., Nat. Commun. 9 (2018) 3856.
doi: 10.1038/s41467-018-06140-1
A. Abdullah, A. Waseem, I.V. Bagal, et al., ACS Appl. Energy Mater. 4 (2021) 13759–13765.
doi: 10.1021/acsaem.1c02486
S. Ye, W. Feng, J. Li, et al., J. Electroanal. Chem. 927 (2022) 116975.
doi: 10.1016/j.jelechem.2022.116975
P. Huang, D. Hu, Q. Zhao, et al., Int. J. Hydrogen Energy 48 (2023) 4264–4275.
doi: 10.1016/j.ijhydene.2022.10.256
S. S, A. G, N. A, et al., Int. J. Hydrogen Energy 46 (2021) 26381–26390.
doi: 10.1016/j.ijhydene.2021.05.144
P.G. Moses, C.G. Van de Walle, Appl. Phys. Lett. 96 (2010) 021908.
doi: 10.1063/1.3291055
D. Wang, A. Pierre, M.G. Kibria, et al., Nano Lett. 11 (2011) 2353–2357.
doi: 10.1021/nl2006802
C. Zhuang, Y. Chang, W. Li, et al., ACS Nano 18 (2024) 5206–5217.
doi: 10.1021/acsnano.4c00217
J. Benton, J. Bai, T. Wang, Appl. Phys. Lett. 105 (2014) 223902.
doi: 10.1063/1.4903246
S. Chu, X. Kong, S. Vanka, et al., Semicond. Semimet. 97 (2017) 223–255.
M.G. Kibria, H.P. Nguyen, K. Cui, et al., ACS Nano 7 (2013) 7886–7893.
doi: 10.1021/nn4028823
J. Di, G. Hao, G. Liu, et al., Coord. Chem. Rev. 482 (2023) 215057.
doi: 10.1016/j.ccr.2023.215057
K. Maeda, T. Takata, M. Hara, et al., J. Am. Chem. Soc. 127 (2005) 8286–8287.
doi: 10.1021/ja0518777
K. Maeda, K. Teramura, T. Takata, et al., J. Phys. Chem. B 109 (2005) 20504–20510.
doi: 10.1021/jp053499y
K. Zhang, T. Chen, Y. Abbas, et al., Matter 4 (2021) 1054–1071.
doi: 10.1016/j.matt.2020.12.024
C. Li, D. Zhu, S. Cheng, et al., Chin. Chem. Lett. 33 (2022) 1141–1153.
doi: 10.1016/j.cclet.2021.07.057
C. Cheng, S. Zong, J. Shi, et al., Appl. Catal. B: Environ. 265 (2020) 118620.
doi: 10.1016/j.apcatb.2020.118620
Z. Liang, Y. Xue, X. Wang, et al., Chem. Eng. J. 421 (2021) 130016.
doi: 10.1016/j.cej.2021.130016
K. Maeda, N. Sakamoto, T. Ikeda, et al., Chem. Eur. J. 16 (2010) 7750–7759.
doi: 10.1002/chem.201000616
Y. Wang, S. Vanka, J. Gim, et al., Nano Energy 57 (2019) 405–413.
doi: 10.3390/atmos10070405
L. Chen, X. Yu, Z. Hua, et al., ACS Appl. Energy Mater. 6 (2023) 3769–3777.
doi: 10.1021/acsaem.2c03978
P. Tyagi, C. Ramesh, J. Kaswan, et al., J. Alloys Compd. 805 (2019) 97–103.
doi: 10.1016/j.jallcom.2019.07.071
E. Butanovs, K. Kadiwala, A. Gopejenko, et al., Appl. Surf. Sci. 590 (2022) 153106.
doi: 10.1016/j.apsusc.2022.153106
T. Rao, W. Cai, H. Zhang, et al., J. Mater. Chem. C 9 (2021) 5323–5342.
doi: 10.1039/d0tc05609j
W.J. Dong, Z. Mi, J. Mater. Chem. A 11 (2023) 5427–5459.
doi: 10.1039/d2ta09967e
S. Fang, Y.H. Hu, Int. J. Energy Res. 43 (2019) 1082–1098.
doi: 10.1002/er.4259
N. Li, F. Xiang, A. Fratalocchi, Adv. Sustain. Syst. 5 (2021) 2000242.
doi: 10.1002/adsu.202000242
M. Zhang, S. Zhao, Z. Zhao, et al., ACS Appl. Mater. Interfaces 13 (2021) 10916–10924.
doi: 10.1021/acsami.0c21976
H. Pang, W. Zhou, H. Hu, et al., Appl. Catal. A: Gen. 654 (2023) 119084.
doi: 10.1016/j.apcata.2023.119084
D. Hansora, Matter 6 (2023) 2501–2502.
doi: 10.1016/j.matt.2023.05.006
B. Ren, X. Zhang, M. Zhao, et al., AIP Adv. 8 (2018) 015206.
doi: 10.1063/1.5009307
R.M. Doughty, F.A. Chowdhury, Z. Mi, et al., J. Chem. Phys. 153 (2020) 144707.
doi: 10.1063/5.0021273
D.M. Fabian, S. Hu, N. Singh, et al., Energy Environ. Sci. 8 (2015) 2825–2850.
doi: 10.1039/C5EE01434D
C.A. Rodriguez, M.A. Modestino, D. Psaltis, et al., Energy Environ. Sci. 7 (2014) 3828–3835.
doi: 10.1039/C4EE01453G
M. Li, W. Luo, B. Liu, et al., Appl. Phys. Lett. 99 (2011) 112108.
doi: 10.1063/1.3640223
A.T. Garcia-Esparza, T. Shinagawa, S. Ould-Chikh, et al., Angew. Chem. Int. Ed. 56 (2017) 5780–5784.
doi: 10.1002/anie.201701861
F. Pantle, M. Karlinger, S. Wörle, et al., J. Appl. Phys. 132 (2022) 184304.
doi: 10.1063/5.0098016
K. Mudiyanselage, K. Katsiev, H. Idriss, et al., J. Cryst. Growth 547 (2020) 125818.
doi: 10.1016/j.jcrysgro.2020.125818
P. Li, T. Xiong, S. Sun, et al., J. Alloys Compd. 825 (2020) 154070.
doi: 10.1016/j.jallcom.2020.154070
F.A. Chowdhury, M.L. Trudeau, H. Guo, et al., Nat. Commun. 9 (2018) 1707.
doi: 10.1038/s41467-018-04067-1
P. Zhou, I.A. Navid, Y. Ma, et al., Nature 613 (2023) 66–70.
doi: 10.1038/s41586-022-05399-1
R. Fan, S. Cheng, G. Huang, et al., J. Mater. Chem. A 7 (2019) 2200–2209.
doi: 10.1039/c8ta10165e
C. Zhao, L. Li, Y. Zhu, et al., Comput. Theor. Chem. 1225 (2023) 114179.
doi: 10.1016/j.comptc.2023.114179
R. Yuan, Q. Luo, Z. Zhang, et al., CrystEngComm 23 (2021) 2469–2480.
doi: 10.1039/d1ce00070e
J. Lin, Y.-T. Mo, J.-X. Chai, et al., Appl. Surf. Sci. 645 (2024) 158754.
doi: 10.1016/j.apsusc.2023.158754
Y. Wang, Y. Wu, K. Sun, et al., Mat. Horiz. 6 (2019) 1454–1462.
doi: 10.1039/c9mh00257j
H. Chen, P. Wang, X. Wang, et al., Nano Energy 83 (2021) 105768.
doi: 10.1016/j.nanoen.2021.105768
S. Wang, P. Shao, T. Zhi, et al., Adv. Photon. Nexus 2 (2023) 036003.
H.P. Nguyen, M. Djavid, K. Cui, et al., Nanotechnology 23 (2012) 194012.
doi: 10.1088/0957-4484/23/19/194012
S. Tembhurne, F. Nandjou, S. Haussener, Nat. Energy 4 (2019) 399–407.
doi: 10.1038/s41560-019-0373-7
Q. Shen, G. Gao, J. Xue, et al., Int. J. Hydrogen Energy 45 (2020) 26688–26700.
doi: 10.1016/j.ijhydene.2020.07.015
M. Liu, Y. Wang, X. Kong, et al., iScience 17 (2019) 208–216.
doi: 10.1016/j.isci.2019.06.032
Z. Zhang, J.T. Yates Jr., Chem. Rev. 112 (2012) 5520–5551.
doi: 10.1021/cr3000626
M.G. Kibria, F.A. Chowdhury, S. Zhao, et al., Nat. Commun. 6 (2015) 6797.
doi: 10.1038/ncomms7797
X. Yu, P. Yu, D. Wu, et al., Nat. Commun. 9 (2018) 1545.
doi: 10.1038/s41467-018-03935-0
Z. Yin, L. Xie, W. Yin, et al., Chin. Chem. Lett. 35 (2024) 108628.
doi: 10.1016/j.cclet.2023.108628
B. Diffey, Photochem. Photobiol. 91 (2015) 553–557.
doi: 10.1111/php.12422
X. Guan, F.A. Chowdhury, Y. Wang, et al., ACS Energy Lett. 3 (2018) 2230–2231.
doi: 10.1021/acsenergylett.8b01377
W. Liu, L. Cao, W. Cheng, et al., Angew. Chem. Int. Ed. 56 (2017) 9312–9317.
doi: 10.1002/anie.201704358
M. Gao, F. Tian, X. Zhang, et al., Nanomicro Lett. 15 (2023) 129.
L. Liao, Q. Zhang, Z. Su, et al., Nat. Nanotechnol. 9 (2014) 69–73.
doi: 10.1038/nnano.2013.272
F. Wang, L. Xie, N. Sun, et al., Nanomicro Lett. 16 (1) (2023) 32.
H. Wang, H. Qi, X. Sun, et al., Nat. Mater. 22 (2023) 619–626.
doi: 10.1038/s41563-023-01519-y
J. Liu, Y. Liu, N. Liu, et al., Science 347 (2015) 970–974.
doi: 10.1126/science.aaa3145
M. Li, W. Yin, J. Pan, et al., Chem. Eng. J. 471 (2023) 144691.
doi: 10.1016/j.cej.2023.144691
P. Fan, Y. He, J. Pan, et al., Chin. Chem. Lett. 35 (2024) 108513.
doi: 10.1016/j.cclet.2023.108513
W. Yin, Y. Cai, L. Xie, et al., Nano Res. 16 (4) (2022) 4381–4398.
Y. Gao, M. Zhang, Y. Mao, et al., Energy Convers. Manag. 252 (2022) 115125.
doi: 10.1016/j.enconman.2021.115125
J.H. Kim, D. Hansora, P. Sharma, et al., Chem. Soc. Rev. 48 (2019) 1908–1971.
doi: 10.1039/c8cs00699g
Z. Li, Z. Jiang, W. Zhou, et al., Inorg. Chem. 60 (2021) 1991–1997.
doi: 10.1021/acs.inorgchem.0c03478
Y. Zhang, J. Di, X. Zhu, et al., Appl. Catal. B: Environ. 323 (2023) 122148.
doi: 10.1016/j.apcatb.2022.122148
P. Christopher, H. Xin, A. Marimuthu, et al., Nat. Mater. 11 (2012) 1044–1050.
doi: 10.1038/nmat3454
Y. Zhang, H. Zhang, A. Liu, et al., J. Am. Chem. Soc. 140 (2018) 3264–3269.
doi: 10.1021/jacs.7b10979
J. Wang, Y. Zhang, S. Jiang, et al., Angew. Chem. 135 (2023) e202307808.
doi: 10.1002/ange.202307808
Y. Goto, T. Hisatomi, Q. Wang, et al., Joule 2 (2018) 509–520.
doi: 10.1016/j.joule.2017.12.009
A. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev. 112 (2012) 1555–1614.
doi: 10.1021/cr100454n
H. Nishiyama, T. Yamada, M. Nakabayashi, et al., Nature 598 (2021) 304–307.
doi: 10.1038/s41586-021-03907-3
X. Shen, Y.A. Small, J. Wang, et al., J. Phys. Chem. C 114 (2010) 13695–13704.
doi: 10.1021/jp102958s
Y. Wang, Y. Zhang, X. Xin, et al., Science 381 (2023) 291–296.
doi: 10.1126/science.adg0164
C.M. Taylor, A. Ramirez-Canon, J. Wenk, et al., J. Hazard. Mater. 378 (2019) 120799.
doi: 10.1016/j.jhazmat.2019.120799
S. Fan, I. Shih, Z. Mi, Adv. Energy Mater. 7 (2016) 1600952.
Y. Xiao, S. Vanka, T.A. Pham, et al., Nano Lett. 22 (2022) 2236–2243.
doi: 10.1021/acs.nanolett.1c04220
Q. Wang, M. Nakabayashi, T. Hisatomi, et al., Nat. Mater. 18 (2019) 827–832.
doi: 10.1038/s41563-019-0399-z
M.G. Kibria, R. Qiao, W. Yang, et al., Adv. Mater. 28 (2016) 8388–8397.
doi: 10.1002/adma.201602274
A. Kumar, K.R. Phillips, G.P. Thiel, et al., Nat. Catal. 2 (2019) 106–113.
doi: 10.1038/s41929-018-0218-y
W.J. Dong, Y. Xiao, K.R. Yang, et al., Nat. Commun. 14 (2023) 179.
doi: 10.1038/s41467-023-35782-z
C. Liu, N. Zhang, Y. Li, et al., Nat. Commun. 14 (2023) 4266.
doi: 10.1038/s41467-023-40010-9
L. Xie, L. Wang, X. Liu, et al., Angew. Chem. Int. Ed. 63 (5) (2024) e202316306.
doi: 10.1002/anie.202316306
L. Wang, F. Zhang, N. Sun, et al., Chem. Eng. J. 474 (2023) 145792.
doi: 10.1016/j.cej.2023.145792
X. Guan, F.A. Chowdhury, N. Pant, et al., J. Phys. Chem. C 122 (2018) 13797–13802.
doi: 10.1021/acs.jpcc.8b00875
C.-J. Chang, Z. Lee, C.-F. Wang, Int. J. Hydrogen Energy 39 (2014) 20754–20763.
doi: 10.1016/j.ijhydene.2014.06.144
W. Hu, L. Xie, C. Gu, et al., Coord. Chem. Rev. 506 (2024) 215715.
doi: 10.1016/j.ccr.2024.215715
R.K. Karlsson, A. Cornell, Chem. Rev. 116 (2016) 2982–3028.
doi: 10.1021/acs.chemrev.5b00389
W. Chen, J. Du, H. Zhang, et al., Chin Chem Lett. 35 (2024) 109168.
doi: 10.1016/j.cclet.2023.109168
J. Su, Y. Wei, L. Vayssieres, J. Phys. Chem. Lett. 8 (2017) 5228–5238.
doi: 10.1021/acs.jpclett.7b00772
S. Vanka, K. Sun, G. Zeng, et al., J. Mater. Chem. A 7 (2019) 27612–27619.
doi: 10.1039/c9ta09926c
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Lizhang Chen , Yu Fang , Mingxin Pang , Ruoxu Sun , Lin Xu , Qixing Zhou , Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198