Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion
-
* Corresponding author.
E-mail address: yizhou@ecust.edu.cn (Y. Zhou).
Citation:
Weidan Meng, Yanbo Zhou, Yi Zhou. Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion[J]. Chinese Chemical Letters,
;2025, 36(2): 109961.
doi:
10.1016/j.cclet.2024.109961
M.L. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48 (2019) 2783–2828.
doi: 10.1039/c8cs00829a
D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Nat. Rev. Chem. 2 (2018) 0105.
doi: 10.1038/s41570-017-0105
C.T. Dinh, T. Burdyny, M.G. Kibria, et al., Science 360 (2018) 783–787.
doi: 10.1126/science.aas9100
Y. He, M. Gao, Y. Zhou, Y. Zhou, Chemosphere 311 (2023) 136925.
doi: 10.1016/j.chemosphere.2022.136925
Y. Zhou, J. He, X. Li, J. Lu, Y. Zhou, Chem. Eng. J. 435 (2022) 132434.
doi: 10.1016/j.cej.2021.132434
J. Lu, Q. Liu, Y. Zhang, Y. Zhou, Y. Zhou, Chin. Chem. Lett. 35 (2024) 109406..
doi: 10.1016/j.cclet.2023.109406
Y. Zhou, Y. He, M. Gao, et al., Chin. Chem. Lett. 35 (2024) 108690.
doi: 10.1016/j.cclet.2023.108690
F. Qin, E. Almatrafi, C. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202300256.
doi: 10.1002/anie.202300256
S. Lan, C. Yu, F. Sun, et al., Nano Energy 93 (2022) 106792.
doi: 10.1016/j.nanoen.2021.106792
J. He, X. Wang, S. Lan, et al., Appl. Catal. B: Environ. 317 (2022) 121747.
doi: 10.1016/j.apcatb.2022.121747
D. Qin, Y. Zhou, W. Wang, et al., J. Mater. Chem. A 8 (2020) 19156–19195.
doi: 10.1039/d0ta07460h
J. Li, Z. Lou, B. Li, Chin. Chem. Lett. 33 (2022) 1154–1168.
doi: 10.1016/j.cclet.2021.07.059
J. Huang, J. Wang, Z. Hao, et al., Chin. Chem. Lett. 32 (2021) 3180–3184.
doi: 10.1016/j.cclet.2021.03.018
I. Hussain, A.A. Jalil, N.S. Hassan, M.Y.S. Hamid, J. Energy Chem. 62 (2021) 377–407.
doi: 10.1016/j.jechem.2021.03.040
T.L. Wu, L. Liu, M.Y. Pi, D.K. Zhang, S.J. Chen, Appl. Surf. Sci. 377 (2016) 253–261.
doi: 10.1016/j.apsusc.2016.03.140
R.T. Guo, J. Wang, Z.X. Bi, et al., Chemosphere 295 (2022) 133834.
doi: 10.1016/j.chemosphere.2022.133834
K. Li, B.S. Peng, T.Y. Peng, ACS Catal. 6 (2016) 7485–7527.
doi: 10.1021/acscatal.6b02089
R. Zhai, L.H. Zhang, M.Y. Gu, et al., Small 19 (2023) 2207840.
doi: 10.1002/smll.202207840
V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Energy Environ. Sci. 2 (2009) 745–758.
doi: 10.1039/b822176f
L. Liu, W.L. Fan, X. Zhao, et al., Langmuir 28 (2012) 10415–10424.
doi: 10.1021/la301679h
Z.F. Shen, Q.N. Xia, Y.G. Li, et al., J. CO2 Util. 39 (2020) 101176..
doi: 10.1016/j.jcou.2020.101176
X.H. Feng, F.P. Pan, P. Zhang, et al., Chemphotochem 5 (2021) 79–89.
doi: 10.1002/cptc.202000181
L.M. Wang, W.L. Chen, D.D. Zhang, et al., Chem. Soc. Rev. 48 (2019) 5310–5349.
doi: 10.1039/c9cs00163h
H.A.E. Omr, M.W. Horn, H. Lee, Catalysts 11 (2021) 418.
doi: 10.3390/catal11040418
B. Wang, X.H. Wang, L. Lu, et al., ACS Catal. 8 (2018) 516–525.
doi: 10.1021/acscatal.7b02952
H.J. Yu, J.Y. Li, Y.H. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 3880–3884.
doi: 10.1002/anie.201813967
C.T. Campbell, C.H.F. Peden, Science 309 (2005) 713–714.
doi: 10.1126/science.1113955
H.J. Freund, M.W. Roberts, Surf. Sci. Rep. 25 (1996) 225–273.
doi: 10.1016/S0167-5729(96)00007-6
J. Raskó, Catal. Lett. 56 (1998) 11–15.
doi: 10.1023/A:1019072021006
Y.F. Ji, Y. Luo, J. Am. Chem. Soc. 138 (2016) 15896–15902.
doi: 10.1021/jacs.6b05695
Y.Q. He, H. Rao, K.P. Song, et al., Adv. Funct. Mater. 29 (2019) 1905153.
doi: 10.1002/adfm.201905153
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
doi: 10.1002/anie.201207199
K. Koci, L. Obalova, O. Solcova, Chem. Process Eng. 31 (2010) 395–407.
Y.O. Wang, E.Q. Chen, J.W. Tang, ACS Catal. 12 (2022) 7300–7316.
doi: 10.1021/acscatal.2c01012
Y. He, Y. Zhou, J. Feng, M. Xing, Environ. Funct. Mater. 1 (2022) 204–217.
K. Koci, L. Obalova, D. Placha, Z. Lacny, Collect. Czech. Chem. Commun. 73 (2008) 1192–1204.
doi: 10.1135/cccc20081192
R. Das, S. Sarkar, R. Kumar, et al., ACS Catal. 12 (2021) 687–697.
doi: 10.1109/tencon54134.2021.9707338
R.R. Ikreedeegh, M. Tahir, J. CO2 Util. 43 (2021) 101381.
doi: 10.1016/j.jcou.2020.101381
N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, J. CO2 Util. 26 (2018) 98–122.
doi: 10.1016/j.jcou.2018.04.026
G.C. Zuo, Y.T. Wang, W.L. Teo, Q.M. Xian, Y.L. Zhao, Appl. Catal. B: Environ. 291 (2021) 120126.
doi: 10.1016/j.apcatb.2021.120126
P.G. Liu, Z.X. Huang, X.P. Gao, et al., Adv. Mater. 34 (2022) 2200057.
doi: 10.1002/adma.202200057
Y. Ma, S. Wang, X. Duan, Chem. Eng. J. 455 (2023) 140654.
doi: 10.1016/j.cej.2022.140654
A. Li, Q. Cao, G.Y. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 14549–14555.
doi: 10.1002/anie.201908058
J.F. Jing, J. Yang, W.L. Li, Z.H. Wu, Y.F. Zhu, Adv. Mater. 34 (2022) 2106807.
doi: 10.1002/adma.202106807
Y.C. Hao, L.W. Chen, J. Li, et al., Nat. Commun. 12 (2021) 2682.
doi: 10.1038/s41467-021-22991-7
Z.F. Huang, J. Song, X. Wang, et al., Nano Energy 40 (2017) 308–316.
doi: 10.1016/j.nanoen.2017.08.032
X.X. Guo, X.Y. Qin, Z.J. Xue, et al., RSC Adv. 6 (2016) 48537–48542.
doi: 10.1039/C6RA08551B
Y. Liu, Z. Zhang, Y. Fang, et al., Appl. Catal. B: Environ. 252 (2019) 164–173.
doi: 10.1016/j.apcatb.2019.04.035
X. Xie, Q.U. Hassan, H. Lu, et al., Chin. Chem. Lett. 32 (2021) 2038–2042.
doi: 10.1016/j.cclet.2020.10.002
S. Sun, M. Watanabe, J. Wu, Q. An, T. Ishihara, J. Am. Chem. Soc. 140 (2018) 6474–6482.
doi: 10.1021/jacs.8b03316
Y. Deng, J. Li, R. Zhang, et al., Chin. J. Catal. 43 (2022) 1230–1237.
doi: 10.1016/S1872-2067(21)63868-8
Y. Wang, R. Liu, M. Shi, et al., Chin. Chem. Lett. 34 (2023) 107200.
doi: 10.1016/j.cclet.2022.02.006
N.N. Vu, S. Kaliaguine, T.O. Do, ChemSusChem 13 (2020) 3967–3991.
doi: 10.1002/cssc.202000905
D.B. Hemandez-Uresti, D. Sanchez-Martinez, A. Martinez-de la Cruz, S. Sepulveda-Guzman, L.M. Torres-Martinez, Ceram. Int. 40 (2014) 4767–4775.
doi: 10.1016/j.ceramint.2013.09.022
Y. Deng, Y. Liu, Y. Deng, et al., Chin. Chem. Lett. 35 (2024) 108898.
doi: 10.1016/j.cclet.2023.108898
J. Li, J. Feng, X. Guo, et al., Appl. Catal. B: Environ. 309 (2022) 121248.
doi: 10.1016/j.apcatb.2022.121248
T. Li, X. Dong, W. Chen, et al., Appl. Surf. Sci. 526 (2020) 146578.
doi: 10.1016/j.apsusc.2020.146578
C. Lu, J. Li, J. Yan, et al., Appl. Mater. Today 20 (2020) 100744.
doi: 10.1016/j.apmt.2020.100744
M. Shi, X. Tong, W. Li, et al., ACS Appl. Mater. Interface. 9 (2017) 34990–35000.
doi: 10.1021/acsami.7b10891
Z. Xiong, Z. Lei, S. Ma, et al., Appl. Catal. B: Environ. 219 (2017) 412–424.
doi: 10.1016/j.apcatb.2017.07.078
Z. Zhu, X. Tang, T. Wang, et al., Appl. Catal. B: Environ. 241 (2019) 319–328.
doi: 10.1016/j.apcatb.2018.09.009
N. Ojha, A. Bajpai, S. Kumar, Catal. Sci. Technol. 9 (2019) 4598–4613.
doi: 10.1039/c9cy01185d
H. Wang, L. Zhang, K. Wang, X. Sun, W. Wang, Appl. Catal. B: Environ. 243 (2019) 771–779.
doi: 10.1016/j.apcatb.2018.11.021
M. Zhang, G. Cheng, Y. Wei, et al., J. Colloid Interface Sci. 572 (2020) 306–317.
doi: 10.1016/j.jcis.2020.03.090
L. Yi, W. Zhao, Y. Huang, et al., Sci. China Mater. 63 (2020) 2206–2214.
doi: 10.1007/s40843-019-1263-1
L. Wang, X.S. Zheng, L. Chen, Y.J. Xiong, H.X. Xu, Angew. Chem. Int. Ed. 57 (2018) 3454–3458.
doi: 10.1002/anie.201710557
Y. Xiao, T. Wang, G.H. Qiu, et al., J. Colloid Interface Sci. 577 (2020) 459–470.
doi: 10.1016/j.jcis.2020.05.099
S.B. Wang, B.Y. Guan, Y. Lu, X.W. Lou, J. Am. Chem. Soc. 139 (2017) 17305–17308.
doi: 10.1021/jacs.7b10733
B. Tahir, M. Tahir, M.G.M. Nawawi, J. CO2 Util. 41 (2020) 101270.
doi: 10.1016/j.jcou.2020.101270
X. Jiang, Y. Ding, S. Zheng, et al., ChemSusChem 15 (2022) e202102295.
doi: 10.1002/cssc.202102295
Z. Tang, C. Wang, W. He, et al., Chin. Chem. Lett. 33 (2022) 939–942.
doi: 10.1016/j.cclet.2021.07.020
F. Xu, K. Meng, B. Cheng, et al., Nat. Commun. 11 (2020) 4613.
doi: 10.1038/s41467-020-18350-7
A. Meng, B. Cheng, H. Tan, et al., Appl. Catal. B: Environ. 289 (2021) 120039.
doi: 10.1016/j.apcatb.2021.120039
S. Karmakar, S. Barman, F.A. Rahimi, T.K. Maji, Energy Environ. Sci. 14 (2021) 2429–2440.
doi: 10.1039/d0ee03643a
X. Li, B. Kang, F. Dong, et al., Nano Energy 81 (2021) 105671.
doi: 10.1016/j.nanoen.2020.105671
M. Lin, M. Luo, Y. Liu, et al., Chin. J. Catal. 50 (2023) 239–248.
doi: 10.56028/aehssr.4.1.239.2023
J. Wang, H. Cheng, D. Wei, Z. Li, Chin. J. Catal. 43 (2022) 2606–2614.
doi: 10.1016/S1872-2067(22)64091-9
Z. Xing, J. Hu, M. Ma, et al., J. Am. Chem. Soc. 141 (2019) 19715–19727.
doi: 10.1021/jacs.9b08651
Y. Li, Y. Liu, D. Xing, et al., Appl. Catal. B: Environ. 285 (2021) 119855.
doi: 10.1016/j.apcatb.2020.119855
H. Jiang, W. Wang, L. Sun, et al., J. Catal. 416 (2022) 1–10.
doi: 10.1016/j.jcat.2022.10.015
L. Liang, X. Li, Y. Sun, et al., Joule 2 (2018) 1004–1016.
doi: 10.1016/j.joule.2018.02.019
Y. Huang, K. Dai, J. Zhang, G. Dawson, Chin. J. Catal. 43 (2022) 2539–2547.
doi: 10.1016/S1872-2067(21)64024-X
C. Zhu, X. Chen, J. Ma, et al., J. Phys. Chem. C 122 (2018) 20444–20458.
doi: 10.1021/acs.jpcc.8b06624
X. Jiang, J. Huang, Z. Bi, et al., Adv. Mater. 34 (2022) 2109330.
doi: 10.1002/adma.202109330
Y.J. Dong, Y. Jiang, J.F. Liao, et al., Sci. China Mater. 65 (2022) 1550–1559.
doi: 10.1007/s40843-021-1962-9
Y.F. Li, N. Soheilnia, M. Greiner, et al., ACS Appl. Mater. Interfaces 11 (2019) 5610–5615.
doi: 10.1021/acsami.8b04982
H. Zhang, Y. Wang, S. Zuo, et al., J. Am. Chem. Soc. 143 (2021) 2173–2177.
doi: 10.1021/jacs.0c08409
Z. Zhu, W.R. Huang, C.Y. Chen, R.J. Wu, J. CO2 Util. 28 (2018) 247–254.
doi: 10.1016/j.jcou.2018.10.006
A. Raza, H. Shen, A.A. Haidry, et al., J. CO2 Util. 37 (2020) 260–271.
doi: 10.1016/j.jcou.2019.12.020
Q. Chen, X. Lan, K. Chen, Q. Ren, J. Shi, J. Colloid Interface Sci. 616 (2022) 253–260.
doi: 10.1016/j.jcis.2022.02.044
P.Y. Jia, R.T. Guo, W.G. Pan, et al., Colloid Surface A 570 (2019) 306–316.
doi: 10.1016/j.colsurfa.2019.03.045
Y. Feng, C. Wang, P. Cui, et al., Adv. Mater. 34 (2022) e2109074.
doi: 10.1002/adma.202109074
L. Shen, Z. Xie, L. Hou, J. Yang, Q. Li, Energy Fuel. 36 (2022) 11515–11523.
doi: 10.1021/acs.energyfuels.2c01366
B. Weng, M.Y. Qi, C. Han, Z.R. Tang, Y.J. Xu, ACS Catal. 9 (2019) 4642–4687.
doi: 10.1021/acscatal.9b00313
C. Kuai, Z. Xu, C. Xi, et al., Nat. Catal. 3 (2020) 743–753.
doi: 10.1038/s41929-020-0496-z
Z. Wan, G. Zhang, X. Wu, S. Yin, Appl. Catal. B: Environ. 207 (2017) 17–26.
doi: 10.1016/j.apcatb.2017.02.014
H. Dong, X. Guo, C. Yang, Z. Ouyang, Appl. Catal. B: Environ. 230 (2018) 65–76.
doi: 10.1016/j.apcatb.2018.02.044
G.F. Samu, C. Janáky, J. Am. Chem. Soc. 142 (2020) 21595–21614.
doi: 10.1021/jacs.0c10348
D. Zeng, H. Wang, X. Zhu, et al., Chem. Eng. J. 451 (2023) 138801.
doi: 10.1016/j.cej.2022.138801
W. Shi, X. Guo, C. Cui, et al., Appl. Catal. B: Environ. 243 (2019) 236–242.
doi: 10.1016/j.apcatb.2018.09.076
Y. Liu, X. Dong, Q. Yuan, et al., Colloid Surface A 621 (2021) 126582.
doi: 10.1016/j.colsurfa.2021.126582
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499