Citation: Siqi Sun, Cheng Zhao, Zhaohuan Zhang, Ding Wang, Xinru Yin, Jingting Han, Jinlei Wei, Yong Zhao, Yongheng Zhu. Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature[J]. Chinese Chemical Letters, ;2025, 36(5): 109939. doi: 10.1016/j.cclet.2024.109939 shu

Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature

    * Corresponding authors.
    E-mail addresses: yzhao@shou.edu.cn (Y. Zhao), yh-zhu@shou.edu.cn (Y. Zhu).
    1 These authors contributed equally to this work.
  • Received Date: 30 January 2024
    Revised Date: 11 March 2024
    Accepted Date: 28 April 2024
    Available Online: 29 April 2024

Figures(5)

  • Listeria monocytogenes (LM) is a dangerous foodborne pathogen for humans. One emerging and validated method of indirectly assessing LM in food is detecting 3-hydroxy-2-butanone (3H2B) gas. In this study, the synthesis of 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTMS) functionalized hierarchical hollow TiO2 nanospheres was achieved via precise controlling of solvothermal reaction temperature and post-grafting route. The sensors based on as-prepared materials exhibited excellent sensitivity (480 Hz@50 ppm), low detection limit (100 ppb), and outstanding selectivity. Moreover, the evaluation of LM with high sensitivity and specificity was achieved using the sensors. Such stable three-dimensional spheres, whose distinctive hierarchical and hollow nanostructure simultaneously improved both sensitivity and response/recovery speed dramatically, were spontaneously assembled by nanosheets. Meanwhile, the moderate loadings of AAPTMS significantly improved the selectivity of sensors. Then, the gas-sensing mechanism was explored by utilizing thermodynamic investigation, Gaussian 16 software, and in situ diffuse reflectance infrared transform spectroscopy, illustrating the weak chemisorption between the -NH- group and 3H2B molecules. These portable sensors are promising for real-time assessment of LM at room temperature, which will make a magnificent contribution to food safety.
  • 加载中
    1. [1]

      C. Fang, X.Y. Chen, X.Y. Liang, et al., Kafkas Univ. Vet. Fak. Derg. 25 (2019) 665–672.

    2. [2]

      L.H. Kuang, Y.Y. Lai, Y.H. Gong, J. Obstet. Gynaecol. Res. 48 (2022) 66–72.  doi: 10.1111/jog.15063

    3. [3]

      S. Liu, X.L. He, T. Zhang, et al., Chin. Chem. Lett. 33 (2022) 1933–1935.

    4. [4]

      D.K. Soni, R. Ahmad, S.K. Dubey, Crit. Rev. Microbiol. 44 (2018) 590–608.  doi: 10.1080/1040841x.2018.1473331

    5. [5]

      D. Wang, Q. Chen, H.L. Huo, et al., Food Control 73 (2017) 555–561.

    6. [6]

      L. Wang, P.P. Zhao, X.X. Si, et al., Front. Microbiol. 10 (2020) 2959.

    7. [7]

      Y. Wang, Y.X. Li, J.L. Yang, J. Ruan, C.J. Sun, Trends Anal. Chem. 78 (2016) 1–16.

    8. [8]

      Y.X. Yu, X.H. Sun, Y. Liu, Y.J. Pan, Y. Zhao, Can. J. Microbiol. 61 (2015) 367– 372.  doi: 10.1139/cjm-2014-0652

    9. [9]

      Y.H. Zhu, Y. Zhao, J.H. Ma, et al., J. Am. Chem. Soc. 139 (2017) 10365–10373.  doi: 10.1021/jacs.7b04221

    10. [10]

      L.J. Cheng, X. Li, Y.T. Tian, et al., Food Chem. X 19 (2023) 100873.

    11. [11]

      Y.C. Tian, D.P. Xu, C. Liu, et al., Mater. Sci. Semicond. Process 137 (2022) 106160.

    12. [12]

      X.T. Fang, L.Y. Wang, X. He, J.Q. Xu, Z.M. Duan, Inorg. Chem. 57 (2018) 1689–1692.  doi: 10.1021/acs.inorgchem.7b02671

    13. [13]

      J.S. Malhotra, M. Kubus, K.S. Pedersen, S.I. Andersen, J. Sundberg, ACS Sens. 8 (2023) 3478–3486.  doi: 10.1021/acssensors.3c01058

    14. [14]

      S. Chen, X. Duan, C. Liu, et al., J. Hazard. Mater. 467 (2024) 133672.

    15. [15]

      J. Zong, Y.S. Zhang, Y. Zhu, et al., Sens. Actuator. B: Chem. 271 (2018) 311–320.

    16. [16]

      F. Li, X. Gao, R. Wang, T. Zhang, G.Y. Lu, Sens. Actuator. B: Chem. 248 (2017) 812–819.

    17. [17]

      Y. Chen, L.Y. Wang, J.W. Kong, B. Shen, J.Q. Xu, Chin. Chem. Lett. 31 (2020) 2125–2128.

    18. [18]

      J.J. Qiu, D.M. Ke, H.C. Lin, et al., Chin. Chem. Lett. 34 (2023) 107391.

    19. [19]

      L. Mardiana, A.Y.P. Wardoyo, H.A. Dharmawan Masruroh, Pol. J. Environ. Stud. 32 (2023) 1735–1742.  doi: 10.15244/pjoes/159078

    20. [20]

      T. Zhao, P.P. Qiu, Y. Fan, et al., Adv. Sci. 6 (2019) 1902008.

    21. [21]

      Y. Liu, Y.F. Luo, A.A. Elzatahry, et al., ACS Central Sci. 1 (2015) 400–408.  doi: 10.1021/acscentsci.5b00256

    22. [22]

      W.H. Yan, W.R. Yan, T.D. Chen, et al., ACS Appl. Nano Mater. 3 (2020) 2545–2553.  doi: 10.1021/acsanm.9b02614

    23. [23]

      H.F. Zhang, J.Y. Xuan, Q. Zhang, et al., Rare Metals 41 (2022) 3976–3999.  doi: 10.1007/s12598-022-02087-x

    24. [24]

      X.W. Cheng, L. Huang, X.Y. Yang, et al., J. Colloid Interface Sci. 535 (2019) 425–435.

    25. [25]

      Y. Liu, Z.R. Wang, W. Teng, et al., J. Mater. Chem. A 6 (2018) 3162–3170.  doi: 10.1039/c7ta10106f

    26. [26]

      Y. Yang, Y. Liang, G.Z. Wang, et al., ACS Appl. Mater. Interfaces 7 (2015) 24902–24908.  doi: 10.1021/acsami.5b08372

    27. [27]

      Y.G. Wang, L.C. Yao, L.J. Xu, et al., Mater. Lett. 302 (2021) 130460.

    28. [28]

      W. Chen, Z.H. Wang, S. Gu, et al., Sens. Actuator. B: Chem. 305 (2020) 127476.

    29. [29]

      Y.S. Cao, Y. Fan, Z.H. Ma, et al., Sens. Actuator. B: Chem. 273 (2018) 1162– 1169.

    30. [30]

      S. Karapati, T. Giannakopoulou, N. Todorova, et al., Appl. Catal. B: Environ. 176 (2015) 578–585.

    31. [31]

      F.Y. Song, H. Sun, H.L. Ma, H. Gao, Nanomaterials 12 (2022) 2536.  doi: 10.3390/nano12152536

    32. [32]

      G.Q. Zhang, H.B. Wu, T. Song, U. Paik, X.W. Lou, Angew. Chem. Int. Ed. 53 (2014) 12590–12593.  doi: 10.1002/anie.201406476

    33. [33]

      A. Alshehri, K. Narasimharao, J. Mater. Res. Technol. 9 (2020) 14907–14921.

    34. [34]

      Y.H. Zhu, H. Li, Q. Zheng, J.Q. Xu, X.X. Li, Langmuir 28 (2012) 7843–7850.  doi: 10.1021/la300560j

    35. [35]

      A.R. Jimenez, D. Nuñez, N. Rojas, Y. Ramirez, M. Acevedo, ACS Omega 6 (2021) 4932–4938.

    36. [36]

      X. Zhao, P. Dai, D.Y. Xu, et al., J. Energy Chem. 59 (2021) 455–464.

    37. [37]

      L. Ren, W. Zhu, Y.H. Li, et al., Nano-Micro Lett. 14 (2022) 144.

    38. [38]

      K.Y. Chen, W.H. Xie, Y. Deng, et al., ACS Nano 17 (2023) 15763–15775.  doi: 10.1021/acsnano.3c03549

    39. [39]

      X. Fang, S.B. Wu, Y.H. Wu, et al., Appl. Surf. Sci. 518 (2020) 146226.

    40. [40]

      Z.Y. Zhu, L.J. Zheng, S.Z. Zheng, et al., J. Mater. Chem. A 6 (2018) 21419–21427.  doi: 10.1039/c8ta08670b

    41. [41]

      W. Chen, F.F. Deng, M. Xu, et al., Sens. Actuator. B: Chem. 273 (2018) 498–504.

    42. [42]

      S.Q. Xie, C. Zhao, J.B. Shen, et al., ACS Sens. 8 (2023) 728–738.  doi: 10.1021/acssensors.2c02257

    43. [43]

      Y.H. Zhu, X.H. Dong, J.S. Cheng, et al., Chin. Chem. Lett. 34 (2023) 107930.

    44. [44]

      L.Y. Wang, Z.X. Wang, Q. Xiang, et al., Sens. Actuator. B: Chem. 248 (2017) 820–828.  doi: 10.1038/onc.2016.250

    45. [45]

      H.J. Cai, N. Luo, X.W. Wang, et al., Small 19 (2023) 2302652.  doi: 10.1002/smll.20230265

  • 加载中
    1. [1]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    2. [2]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    3. [3]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    4. [4]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    7. [7]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    8. [8]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Xiaxi YaoXiuli HuFangcheng HuangXuhong WangXuekun HongDawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

Metrics
  • PDF Downloads(0)
  • Abstract views(23)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return