Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte
-
* Corresponding author.
E-mail address: kkhuang@jlu.edu.cn (K. Huang).
Citation:
Jingyu Shi, Xiaofeng Wu, Yutong Chen, Yi Zhang, Xiangyan Hou, Ruike Lv, Junwei Liu, Mengpei Jiang, Keke Huang, Shouhua Feng. Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte[J]. Chinese Chemical Letters,
;2025, 36(5): 109938.
doi:
10.1016/j.cclet.2024.109938
G. Harper, R. Sommerville, E. Kendrick, et al., Nature 575 (2019) 75–86.
doi: 10.1038/s41586-019-1682-5
Y. Liu, X. Tao, Y. Wang, et al., Science 375 (2022) 739–745.
doi: 10.1126/science.abn1818
Y. Zeng, B. Ouyang, J. Liu, et al., Science 378 (2022) 1320–1324.
doi: 10.1126/science.abq1346
Y.C. Yin, J.T. Yang, J.D. Luo, et al., Nature 616 (2023) 77–83.
doi: 10.1038/s41586-023-05899-8
Y. Chen, Z. Wang, X. Li, et al., Nature 578 (2020) 251–255.
doi: 10.1038/s41586-020-1972-y
R. Chen, Q. Li, X. Yu, et al., Chem. Rev. 120 (2019) 6820–6877.
W. Lu, M. Xue, C. Zhang, Energy Storage Mater. 39 (2021) 108–129.
doi: 10.1016/j.ensm.2021.04.016
S. Kalnaus, N.J. Dudney, A.S. Westover, et al., Science 381 (2023) eabg5998.
doi: 10.1126/science.abg5998
Y. Li, S. Song, H. Kim, et al., Science 381 (2023) 50–53.
doi: 10.1126/science.add7138
S. Yu, J. Noh, B. Kim, et al., Science 382 (2023) 573–579.
doi: 10.1126/science.adg6591
X. Shen, H. Liu, X.-B. Cheng, et al., Energy Storage Mater. 12 (2018) 161–175.
doi: 10.1016/j.ensm.2017.12.002
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 1–16.
Z. Wu, Z. Xie, A. Yoshida, et al., Renew. Sust. Energ. Rev. 109 (2019) 367–385.
doi: 10.1016/j.rser.2019.04.035
A.K. Mishra, H.A. Chaliyawala, R. Patel, et al., J. Electrochem. Soc. 168 (2021) 080536.
doi: 10.1149/1945-7111/ac1dcc
L.Z. Fan, H. He, C.W. Nan, Nat. Rev. Mater. 6 (2021) 1003–1019.
doi: 10.1038/s41578-021-00320-0
J.F. Ding, R. Xu, C. Yan, et al., Chin. Chem. Lett. 31 (2020) 2339–2342.
doi: 10.1016/j.cclet.2020.03.015
F. He, Z. Hu, W. Tang, et al., Adv. Funct. Mater. 32 (2022) 2201465.
doi: 10.1002/adfm.202201465
Q. Zhao, S. Stalin, C.-Z. Zhao, et al., Nat. Rev. Mater. 5 (2020) 229–252.
doi: 10.1038/s41578-019-0165-5
X. Zhu, K. Wang, Y. Xu, et al., Energy Storage Mater. 36 (2021) 291–308.
doi: 10.1016/j.ensm.2021.01.002
L. Xu, J. Li, H. Shuai, et al., J. Energy Chem. 67 (2022) 524–548.
doi: 10.1016/j.jechem.2021.10.038
Z. Gao, H. Sun, L. Fu, et al., Adv. Mater. 30 (2018) 1705702.
doi: 10.1002/adma.201705702
J.C. Bachman, S. Muy, A. Grimaud, et al., Chem. Rev. 116 (2016) 140–162.
doi: 10.1021/acs.chemrev.5b00563
X. Ke, Y. Wang, G. Ren, et al., Energy Storage Mater. 26 (2020) 313–324.
doi: 10.1016/j.ensm.2019.08.029
C. Wang, J.T. Kim, C. Wang, et al., Adv. Mater. 35 (2023) 2209074.
doi: 10.1002/adma.202209074
C. Li, Y. Qiu, Y. Zhao, et al., Chin. Chem. Lett. 35 (2024) 108846.
doi: 10.1016/j.cclet.2023.108846
Y. Wu, S. Wang, H. Li, et al., InfoMat 3 (2021) 827–853.
doi: 10.1002/inf2.12224
T. Famprikis, P. Canepa, J.A. Dawson, et al., Nat. Mater. 18 (2019) 1278–1291.
doi: 10.1038/s41563-019-0431-3
S. Ramakumar, C. Deviannapoorani, L. Dhivya, et al., Prog. Mater. Sci. 88 (2017) 325–411.
doi: 10.1016/j.pmatsci.2017.04.007
A.M. Abakumov, S.S. Fedotov, E.V. Antipov, et al., Nat. Commun. 11 (2020) 4976.
doi: 10.1038/s41467-020-18736-7
C. Wang, J. Liang, J.T. Kim, et al., Sci. Adv. 8 (2022) eadc9516.
doi: 10.1126/sciadv.adc9516
Y. Chen, K. Wen, T. Chen, et al., Energy Storage Mater. 31 (2020) 401–433.
doi: 10.1016/j.ensm.2020.05.019
R. Chen, W. Qu, X. Guo, et al., Mater. Horizons. 3 (2016) 487–516.
doi: 10.1039/C6MH00218H
R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 46 (2007) 7778–7781.
doi: 10.1002/anie.200701144
S. Hu, Y.F. Li, R. Yang, et al., Ceram. Int. 44 (2018) 6614–6618.
doi: 10.1016/j.ceramint.2018.01.065
W. Luo, Y. Gong, Y. Zhu, et al., Adv. Mater. 29 (2017) 1606042.
doi: 10.1002/adma.201606042
C. Wang, K. Fu, S.P. Kammampata, et al., Chem. Rev. 120 (2020) 4257–4300.
doi: 10.1021/acs.chemrev.9b00427
Y.Z. Zhu, X.F. He, Y.F. Mo, J. Mater. Chem. A 4 (2016) 3253–3266.
doi: 10.1039/C5TA08574H
J. Gao, J.X. Zhu, X.L. Li, et al., Adv. Funct. Mater. 31 (2021) 2001918.
doi: 10.1002/adfm.202001918
X. He, Y. Zhu, Y. Mo, Nat. Commun. 8 (2017) 15893.
doi: 10.1038/ncomms15893
E.J. Cussen, J. Mater. Chem. 20 (2010) 5167–5173.
doi: 10.1039/b925553b
S. Abouali, C.-H. Yim, A. Merati, et al., ACS. Energy Lett. 6 (2021) 1920–1941.
doi: 10.1021/acsenergylett.1c00401
V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43 (2014) 4714–4727.
doi: 10.1039/c4cs00020j
A.J. Samson, K. Hofstetter, S. Bag, et al., Energy Environ. Sci. 12 (2019) 2957–2975.
doi: 10.1039/c9ee01548e
M.P. O’Callaghan, D.R. Lynham, E.J. Cussen, et al., Chem. Mater. 18 (2006) 4681–4689.
doi: 10.1021/cm060992t
M.P. O’Callaghan, A.S. Powell, J.J. Titman, et al., Chem. Mater. 20 (2008) 2360–2369.
doi: 10.1021/cm703677q
H. Peng, Q. Wu, L. Xiao, J. Sol-Gel Sci. Technol. 66 (2013) 175–179.
doi: 10.1007/s10971-013-2984-y
E.J. Cussen, Chem. Commun. (2006) 412–413.
V. Thangadurai, H. Kaack, W.J. Weppner, J. Am. Ceram. Soc. 86 (2003) 437–440.
doi: 10.1111/j.1151-2916.2003.tb03318.x
V. Thangadurai, W. Weppner, J. Solid State Chem. 179 (2006) 974–984.
doi: 10.1016/j.jssc.2005.12.025
V. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 88 (2005) 411–418.
doi: 10.1111/j.1551-2916.2005.00060.x
M.P. O’Callaghan, E.J. Cussen, Chem. Commun. (2007) 2048–2050.
V. Thangadurai, W. Weppner, Adv. Funct. Mater. 15 (2005) 107–112.
doi: 10.1002/adfm.200400044
J. Awaka, N. Kijima, Y. Takahashi, et al., Solid State Ionics 180 (2009) 602–606.
doi: 10.1016/j.ssi.2008.10.022
J. Percival, E. Kendrick, P. Slater, Mater. Res. Bull. 43 (2008) 765–770.
doi: 10.1016/j.materresbull.2007.04.002
H. Xie, Y. Li, J. Han, et al., J. Electrochem. Soc. 159 (2012) A1148.
doi: 10.1149/2.009208jes
R. Murugan, W. Weppner, P. Schmid-Beurmann, et al., Mater. Res. Bull. 43 (2008) 2579–2591.
doi: 10.1016/j.materresbull.2007.10.035
J. Awaka, A. Takashima, K. Kataoka, et al., Chem. Lett. 40 (2011) 60–62.
doi: 10.1246/cl.2011.60
J. Awaka, N. Kijima, H. Hayakawa, et al., J. Solid State Chem. 182 (2009) 2046–2052.
doi: 10.1016/j.jssc.2009.05.020
D. Rettenwander, A. Welzl, L. Cheng, et al., Inorg. Chem. 54 (2015) 10440–10449.
doi: 10.1021/acs.inorgchem.5b01895
F. Sun, Y. Yang, S. Zhao, et al., ACS. Energy Lett. 7 (2022) 2835–2844.
doi: 10.1021/acsenergylett.2c01432
P. Bottke, D. Rettenwander, W. Schmidt, et al., Chem. Mater. 27 (2015) 6571–6582.
doi: 10.1021/acs.chemmater.5b02231
T. Thompson, J. Wolfenstine, J.L. Allen, et al., J. Mater. Chem. A 2 (2014) 13431–13436.
doi: 10.1039/C4TA02099E
Z. Qin, Y. Xie, X. Meng, et al., J. Eur. Ceram. Soc. 43 (2023) 2023–2032.
doi: 10.1016/j.jeurceramsoc.2022.12.028
H. Yang, N. Wu, Energy Sci. Eng. 10 (2022) 1643–1671.
doi: 10.1002/ese3.1163
J.F. Wu, E.Y. Chen, Y. Yu, et al., ACS Appl. Mater. Interfaces 9 (2017) 1542–1552.
doi: 10.1021/acsami.6b13902
E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ionics 206 (2012) 28–32.
doi: 10.1016/j.ssi.2011.10.022
E. Rangasamy, J. Wolfenstine, J. Allen, et al., J. Power Sources 230 (2013) 261–266.
doi: 10.1016/j.jpowsour.2012.12.076
B. Dong, S.R. Yeandel, P. Goddard, et al., Chem. Mater. 32 (2019) 215–223.
doi: 10.4324/9780429293078-17
R. Wagner, D. Rettenwander, G.J. Redhammer, et al., Inorg. Chem. 55 (2016) 12211–12219.
doi: 10.1021/acs.inorgchem.6b01825
Y. Li, J.T. Han, C.A. Wang, et al., J. Mater. Chem. 22 (2012) 15357–15361.
doi: 10.1039/c2jm31413d
W.G. Zeier, Dalton. Trans. 43 (2014) 16133–16138.
doi: 10.1039/C4DT02162B
R. Inada, K. Kusakabe, T. Tanaka, et al., Solid State Ionics 262 (2014) 568–572.
doi: 10.1016/j.ssi.2013.09.008
S. Ramakumar, L. Satyanarayana, S.V. Manorama, et al., Phys. Chem. Chem. Phys. 15 (2013) 11327–11338.
doi: 10.1039/c3cp50991e
K.C. Santosh, R.C. Longo, K. Xiong, et al., Solid State Ionics 261 (2014) 100–105.
doi: 10.1016/j.ssi.2014.04.021
L. Buannic, B. Orayech, J.M. Lopez Del Amo, et al., Chem. Mater. 29 (2017) 1769–1778.
doi: 10.1021/acs.chemmater.6b05369
M. Liu, B. Li, S. Zhang, et al., ACS Appl. Energy Mater. 5 (2022) 7559–7570.
doi: 10.1021/acsaem.2c01018
D. Rettenwander, G.n. Redhammer, F. Preishuber-Pflügl, et al., Chem. Mater. 28 (2016) 2384–2392.
doi: 10.1021/acs.chemmater.6b00579
Y.X. Xiang, G. Zheng, G. Zhong, et al., Solid State Ionics 318 (2018) 19–26.
doi: 10.1016/j.ssi.2017.11.025
D. Wang, G. Zhong, W.K. Pang, et al., Chem. Mater. 27 (2015) 6650–6659.
doi: 10.1021/acs.chemmater.5b02429
C. Bernuy-Lopez, W. Manalastas Jr, J.M. Lopez del Amo, et al., Chem. Mater. 26 (2014) 3610–3617.
doi: 10.1021/cm5008069
J. Zhao, X. Wang, T. Wei, et al., J. Energy Storage. 68 (2023) 107693.
doi: 10.1016/j.est.2023.107693
H. Xie, J.A. Alonso, Y. Li, et al., Chem. Mater. 23 (2011) 3587–3589.
doi: 10.1021/cm201671k
T. Thompson, A. Sharafi, M.D. Johannes, et al., Adv. Energy Mater. 5 (2015) 1500096.
doi: 10.1002/aenm.201500096
H. Nozaki, M. Harada, S. Ohta, et al., Solid State Ionics 262 (2014) 585–588.
doi: 10.1016/j.ssi.2013.10.014
M.M. Ahmad, RSC Adv. 5 (2015) 25824–25829.
doi: 10.1039/C4RA15972A
V. Gajraj, A. Kumar, S. Indris, et al., Ceram. Int. 48 (2022) 29238–29246.
doi: 10.1016/j.ceramint.2022.05.199
B. Zhang, R. Tan, L. Yang, et al., Energy Storage Mater. 10 (2018) 139–159.
doi: 10.1016/j.ensm.2017.08.015
X. Zhang, C. Li, W. Liu, et al., Solid State Ionics 369 (2021) 115713.
doi: 10.1016/j.ssi.2021.115713
N.V. Kireeva, A.Y. Tsivadze, V.S. Pervov, Solid State Ionics 399 (2023) 116293.
doi: 10.1016/j.ssi.2023.116293
X. Xiang, F. Chen, W. Yang, et al., J. Am. Ceram. Soc. 103 (2019) 2483–2490.
Y. Chen, T. Wang, H. Chen, et al., Matter. 6 (2023) 1530–1541.
doi: 10.3390/su15021530
F. Chen, L. Xu, J. Li, et al., Ionics 26 (2020) 3193–3198.
doi: 10.1007/s11581-020-03582-w
A.G. Squires, D.O. Scanlon, B.J. Morgan, Chem. Mater. 32 (2019) 1876–1886.
M. Kubicek, A. Wachter-Welzl, D. Rettenwander, et al., Chem. Mater. 29 (2017) 7189–7196.
doi: 10.1021/acs.chemmater.7b01281
Z. Ma, B. Zhao, W. Li, et al., Ionics 28 (2022) 2673–2683.
doi: 10.1007/s11581-022-04553-z
Y. Zhu, M. Chon, C.V. Thompson, et al., Angew. Chem. Int. Ed. 62 (2023) e2023045.
T. Kawaguchi, K. Sugihara, N. Sakamoto, et al., J. Ceram. Soc. Jpn. 128 (2020) 700–705.
doi: 10.2109/jcersj2.20098
C. Chen, K.X. Wang, H.Y. He, et al., Small. 19 (2023) 2205550.
doi: 10.1002/smll.202205550
K. Hofstetter, A.J. Samson, S. Narayanan, et al., J. Power Sources 390 (2018) 297–312.
doi: 10.1016/j.jpowsour.2018.04.016
L. Cheng, W. Chen, M. Kunz, et al., ACS Appl. Mater. Interfaces 7 (2015) 2073–2081.
doi: 10.1021/am508111r
Y.T. Li, X. Chen, A. Dolocan, et al., J. Am. Chem. Soc. 140 (2018) 6448–6455.
doi: 10.1021/jacs.8b03106
C. Galven, J. Dittmer, E. Suard, et al., Chem. Mater. 24 (2012) 3335–3345.
doi: 10.1021/cm300964k
F. Gam, C. Galven, A. Bulou, et al., Inorg. Chem. 53 (2014) 931–934.
doi: 10.1021/ic402326b
L. Truong, V. Thangadurai, Chem. Mater. 23 (2011) 3970–3977.
doi: 10.1021/cm2015127
S. Narayanan, F. Ramezanipour, V. Thangadurai, Inorg. Chem. 54 (2015) 6968–6977.
doi: 10.1021/acs.inorgchem.5b00972
C. Galven, G. Corbel, F.Le Berre, et al., Inorg. Chem. 55 (2016) 12872–12880.
doi: 10.1021/acs.inorgchem.6b02238
G. Larraz, A. Orera, J. Sanz, et al., J. Mater. Chem. A 3 (2015) 5683–5691.
doi: 10.1039/C4TA04570J
C. Ma, E. Rangasamy, C.D. Liang, et al., Angew. Chem. Int. Ed. 54 (2015) 129–133.
doi: 10.1002/anie.201408124
R.H. Brugge, A.K.O. Hekselman, A. Cavallaro, et al., Chem. Mater. 30 (2018) 3704–3713.
doi: 10.1021/acs.chemmater.8b00486
Y.F. Zhou, A.S. Gao, M.Q. Duan, et al., ACS Appl. Mater. Interfaces 15 (2023) 45465–45474.
doi: 10.1021/acsami.3c09358
S. Huang, M.M. Shang, K.L. Peng, et al., J. Lumines. 243 (2022) 118649.
doi: 10.1016/j.jlumin.2021.118649
C.H. Kuo, A.Y. Wang, H.Y. Liu, et al., APL. Mater. 10 (2022) 121104.
doi: 10.1063/5.0123562
R.J. Ye, M. Ihrig, N. Imanishi, et al., ChemSusChem. 14 (2021) 4397–4407.
doi: 10.1002/cssc.202101178
C. Liu, K. Rui, C. Shen, et al., J. Power Sources 282 (2015) 286–293.
doi: 10.1016/j.jpowsour.2015.02.050
Y.T. Li, J.T. Han, S.C. Vogel, et al., Solid State Ionics 269 (2015) 57–61.
doi: 10.1016/j.ssi.2014.11.010
C. Hiebl, D. Young, R. Wagner, et al., J. Phys. Chem. C 123 (2019) 1094–1098.
doi: 10.1021/acs.jpcc.8b10694
G.J. Redhammer, P. Badami, M. Meven, et al., ACS Appl. Mater. Interfaces 13 (2021) 350–359.
doi: 10.1021/acsami.0c16016
H.Y. Huo, J. Luo, V. Thangadurai, et al., ACS. Energy Lett. 5 (2020) 252–262.
doi: 10.1021/acsenergylett.9b02401
Y.X. Wang, W. Lai, J. Power Sources 275 (2015) 612–620.
doi: 10.1016/j.jpowsour.2014.11.062
L. Cheng, C.H. Wu, A. Jarry, et al., ACS Appl. Mater. Interfaces 7 (2015) 17649–17655.
doi: 10.1021/acsami.5b02528
W.H. Xia, B.Y. Xu, H.N. Duan, et al., ACS Appl. Mater. Interfaces 8 (2016) 5335–5342.
doi: 10.1021/acsami.5b12186
Y.H. Li, A.M. Prabhu, T.S. Choksi, et al., J. Mater. Chem. A 10 (2022) 4960–4973.
doi: 10.1039/d1ta10228a
Y. Arinicheva, X. Guo, M.T. Gerhards, et al., Chem. Mater. 34 (2022) 1473–1480.
doi: 10.1021/acs.chemmater.1c02581
W.H. Xia, B.Y. Xu, H.A. Duan, et al., J. Am. Ceram. Soc. 100 (2017) 2832–2839.
doi: 10.1111/jace.14865
J. Leng, H.Y. Wang, H.M. Liang, et al., ACS Appl. Energy Mater. 5 (2022) 5108–5116.
doi: 10.1021/acsaem.2c00452
A. Sharafi, S.H. Yu, M. Naguib, et al., J. Mater. Chem. A 5 (2017) 13475–13487.
doi: 10.1039/C7TA03162A
Y. Jin, P.J. McGinn, J. Power Sources 239 (2013) 326–331.
doi: 10.1016/j.jpowsour.2013.03.155
R.H. Brugge, F.M. Pesci, A. Cavallaro, et al., J. Mater. Chem. A 8 (2020) 14265–14276.
doi: 10.1039/d0ta04974c
W. Jeong, S.S. Park, J. Yun, et al., Energy Storage Mater. 54 (2023) 543–552.
doi: 10.1016/j.ensm.2022.10.044
S. Kobi, A. Mukhopadhyay, J. Eur. Ceram. Soc. 38 (2018) 4707–4718.
doi: 10.1016/j.jeurceramsoc.2018.06.014
J.L. Gai, E.Q. Zhao, F.R. Ma, et al., J. Eur. Ceram. Soc. 38 (2018) 1673–1678.
doi: 10.1016/j.jeurceramsoc.2017.12.002
L.H. Abrha, T.T. Hagos, Y. Nikodimos, et al., ACS Appl. Mater. Interfaces 12 (2020) 25709–25717.
doi: 10.1021/acsami.0c01289
J.Y. Shi, G. Sun, L.P. Li, et al., ACS. Energy Lett. 8 (2022) 48–55.
doi: 10.3390/wevj13030048
S.G. Kang, D.S. Sholl, J. Phys. Chem. C 118 (2014) 17402–17406.
doi: 10.1021/jp504314w
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870