Citation: Quanquan Li, Chenzhu Zhao, Shanshan Jia, Qiang Chen, Xusheng Li, Mengyao She, Hua Liu, Ping Liu, Yaoyu Wang, Jianli Li. Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red[J]. Chinese Chemical Letters, ;2025, 36(5): 109936. doi: 10.1016/j.cclet.2024.109936 shu

Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red

    * Corresponding authors.
    E-mail addresses: lh128307@163.com (H. Liu), liuping@nwu.edu.cn (P. Liu), lijianli@nwu.edu.cn (J. Li).
    1 These authors contributed equally to this work.
  • Received Date: 9 March 2024
    Revised Date: 9 April 2024
    Accepted Date: 28 April 2024
    Available Online: 29 April 2024

Figures(5)

  • Metal-organic frameworks (MOFs) provide great prospective in the photodegradation of pollutants. Nevertheless, the poor separation and recovery hamper their pilot- or industrial-scare applications because of their microcrystalline features. Herein, this challenge can be tackled by integrating Cu-MOFs into an alginate substrate to offer environmentally friendly, sustainable, facile separation, and high-performance MOF-based hydrogel photocatalysis platforms. The CuII-MOF 1 and CuI-MOF 2 were initially synthesized through a direct diffusion and single-crystal to single-crystal (SCSC) transformation method, respectively, and after the immobilization into alginate, more effective pollutant decontamination was achieved via the synergistic effect of the adsorption feature of hydrogel and in situ photodegradation of Cu-MOFs. Specifically, Cu-MOF-alginate composites present an improved and nearly completed Cr(VI) elimination at a short time of 15–25 min. Additionally, the congo red (CR) decolorization can be effectively enhanced in the presence of Cr(VI), and 1-alginate showed superior simultaneous decontamination efficiency of CR and Cr(VI) with 99% and 78%, respectively. Furthermore, Cu-MOF-alginate composites can maintain a high pollutant removal after over 10 continuous cycles (95% for Cr(VI) after 14 runs, and 90% for CR after 10 runs). Moreover, the Cr(VI)/CR degradation mechanism for Cu-MOF-alginate composite was investigated.
  • 加载中
    1. [1]

      S. Rojas, P. Horcajada, Chem. Rev. 120 (2020) 8378–8415.  doi: 10.1021/acs.chemrev.9b00797

    2. [2]

      K. Wu, X.Y. Liu, P.W. Cheng, et al., J. Am. Chem. Soc. 145 (2023) 18931–18938.  doi: 10.1021/jacs.3c05585

    3. [3]

      T.H. Wang, Z. Zhao, S. Garcia-Segura, et al., Appl. Catal. B: Environ. 342 (2024) 123397.

    4. [4]

      Y.T. Wang, Y. Qin, X.L. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107576.

    5. [5]

      M. Mon, R. Bruno, E. Tiburcio, et al., J. Am. Chem. Soc. 141 (2019) 13601– 13609.  doi: 10.1021/jacs.9b06250

    6. [6]

      B.M. Jun, S.S. Elanchezhiyan, Y. Yoon, et al., Chem. Eng. J. 393 (2020) 124733.

    7. [7]

      D. Kandi, S. Martha, A. Thirumurugan, K.M. Parida, ACS Omega 2 (2017) 9040–9056.  doi: 10.1021/acsomega.7b01250

    8. [8]

      S. Lotfi, K. Fischer, A. Schulze, A.I. Schäfer, Nat. Nanotechnol. 17 (2022) 417–423.  doi: 10.1038/s41565-022-01074-8

    9. [9]

      S. Ren, J. Dong, X. Duan, et al., Chem. Eng. J. 460 (2023) 141884.

    10. [10]

      J. Meng, Y. Zhou, D. Li, X. Jiang, Sci. Bull. 68 (2023) 1522–1530.

    11. [11]

      X. Chen, H. Ma, X. Ji, et al., Water. Res. 243 (2023) 120314.

    12. [12]

      J. Wang, Y. Mao, R. Zhang, et al., Adv. Sci. 9 (2022) 2204036.

    13. [13]

      Z. Guo, Z. Ren, H. Gao, et al., Appl. Surf. Sci. 644 (2024) 158732.

    14. [14]

      Y. Hu, Z. Zhong, M. Lu, et al., Chem. Eng. J. 450 (2022) 137964.

    15. [15]

      J. Xiao, Y. Xie, J. Rabeah, et al., Acc. Chem. Res. 53 (2020) 1024–1033.  doi: 10.1021/acs.accounts.9b00624

    16. [16]

      H. Fu, Y. Deng, Z. Cai, et al., J. Hazard. Mater. 463 (2024) 132820.

    17. [17]

      X. Bai, Y. Du, X. Hu, et al., Appl. Catal. B: Environ. 239 (2018) 204–213.

    18. [18]

      A. Chen, Z. Bian, J. Xu, et al., Chemosphere 188 (2017) 659–666.

    19. [19]

      X. Bai, J. Wan, J. Jia, et al., Mater. Lett. 222 (2018) 187–191.

    20. [20]

      W. Lei, N. Suzuki, C. Terashima, A. Fujishima, Front. Energy 15 (2021) 577–595.  doi: 10.1007/s11708-021-0756-x

    21. [21]

      W. Lei, S. Qi, Q. Rong, et al., Adv. Mater. 31 (2019) 1808217.

    22. [22]

      W. Jiang, Y. Liu, J. Wang, et al., Adv. Mater. Interfaces 3 (2016) 1500502.

    23. [23]

      X. Chen, Q. Chen, W. Jiang, et al., Appl. Catal. B: Environ. 211 (2017) 106–113.

    24. [24]

      H. Zhu, Z. Li, J. Yang, Chem. Eng. J. 334 (2018) 1679–1690.

    25. [25]

      T. Luo, L. Gilmanova, S. Kaskel, Coord. Chem. Rev. 490 (2023) 215210.

    26. [26]

      Y. Hao, E.K. Papazyan, Y. Ba, Y. Liu, ACS Catal. 12 (2021) 363–371.  doi: 10.1177/1071100720965136

    27. [27]

      X. Liu, B. Liu, G. Li, Y. Liu, J. Mater. Chem. A 6 (2018) 17177–17185.  doi: 10.1039/c8ta03807d

    28. [28]

      Y. Wu, X. Wang, K.O. Kirlikovali, et al., Angew. Chem. Int. Ed. 61 (2022) e202117528.

    29. [29]

      W.F. Hu, S. Chen, H.C. Hao, H. Jiang, AIChe J. 68 (2022) e17879.

    30. [30]

      L.J. Chen, S.J. Chen, Y. Qin, et al., J. Am. Chem. Soc. 140 (2018) 5049–5052.  doi: 10.1021/jacs.8b02386

    31. [31]

      P.P. Jia, Y.X. Hu, Z.Y. Zeng, et al., Chin. Chem. Lett. 34 (2023) 107511.

    32. [32]

      H.Y. Lin, L.Y. Zhou, F. Mei, et al., Angew. Chem. Int. Ed. 62 (2023) e202301900.

    33. [33]

      A.W. Addison, T.N. Rao, J. Reedijk, et al., J. Chem. Soc. Dalton Trans. 7 (1984) 1349–1356.

    34. [34]

      C. He, G. Zhang, J. Ke, et al., J. Am. Chem. Soc. 135 (2013) 488–493.  doi: 10.1021/ja310111p

    35. [35]

      G. Zhang, H. Yi, G. Zhang, et al., J. Am. Chem. Soc. 136 (2014) 924–926.  doi: 10.1021/ja410756b

    36. [36]

      H. Yi, D. Yang, Y. Luo, et al., Organometallics 35 (2016) 1426–1429.  doi: 10.1021/acs.organomet.6b00034

    37. [37]

      Y. Zhang, Q. Zhou, Z.F. Qiu, et al., Adv. Funct. Mater. 32 (2022) 2203677.

    38. [38]

      Y. Zhang, M. Schulz, M. Wächtler, et al., Coord. Chem. Rev. 356 (2018) 127–146.

    39. [39]

      T.H. Kim, Y.W. Shin, J.H. Jung, et al., Angew. Chem. Int. Ed. 47 (2008) 685– 688.  doi: 10.1002/anie.200704349

    40. [40]

      H.H. Lee, I.H. Park, S. Kim, et al., Chem. Sci. 8 (2017) 2592–2596.

    41. [41]

      T.J. Matemb Ma Ntep, H. Reinsch, C. Schlüsener, et al., Inorg. Chem. 58 (2019) 10965–10973.  doi: 10.1021/acs.inorgchem.9b01408

    42. [42]

      Z. Yan, Y. Yuan, Y. Tian, et al., Angew. Chem. Int. Ed. 54 (2015) 12733–12737.  doi: 10.1002/anie.201503362

    43. [43]

      J.P. Zhang, S. Kitagawa, J. Am. Chem. Soc. 130 (2008) 907–917.  doi: 10.1021/ja075408b

    44. [44]

      S.Y. Liu, X.L. Qi, R.B. Lin, et al., Adv. Funct. Mater. 24 (2014) 5866–5872.  doi: 10.1002/adfm.201401125

    45. [45]

      S. Yang, L. Peng, O.A. Syzgantseva, et al., J. Am. Chem. Soc. 142 (2020) 13415–13425.  doi: 10.1021/jacs.0c02371

    46. [46]

      H. Zhu, Q. Zhang, S. Zhu, A.C.S. Appl, Mater. Inter. 8 (2016) 17395–17401.  doi: 10.1021/acsami.6b04505

    47. [47]

      S.J. Lee, T. Hann, S.H. Park, ACS Appl. Mater. Inter. 12 (2020) 16319–16326.  doi: 10.1021/acsami.9b22843

    48. [48]

      M. Li, W. Huang, B. Tang, et al., Ind. Eng. Chem. Res. 59 (2020) 18835–18843.  doi: 10.1021/acs.iecr.9b06744

    49. [49]

      X. Xie, X. Zhang, M. Xie, et al., Nat. Commun. 13 (2022) 63.

    50. [50]

      A. Sabatini, L. Sacconi, J. Am. Chem. Soc. 86 (1964) 17–20.  doi: 10.1021/ja01055a005

    51. [51]

      H. Liu, Q. Li, P. Pan, et al., Chin. Chem. Lett. 34 (2023) 108562.

    52. [52]

      T. Luo, L. Li, Y. Chen, et al., Nat. Commun. 12 (2021) 3583.

    53. [53]

      S.Q. Wang, X. Gu, X. Wang, et al., Chem. Eng. J. 429 (2022) 132157.

    54. [54]

      H. Liu, Q.Q. Li, L. Zhou, et al., J. Am. Chem. Soc. 145 (2023) 17588–17596.  doi: 10.1021/jacs.3c02379

    55. [55]

      Q.Q. Li, P.H. Pan, H. Liu, et al., Inorg. Chem. 62 (2023) 17182–17190.  doi: 10.1021/acs.inorgchem.3c02212

    56. [56]

      G. Lu, H. Tang, Y. Huan, et al., Adv. Funct. Mater. 20 (2010) 1714–1720.  doi: 10.1002/adfm.200902281

    57. [57]

      D.Y. Peng, H.Y. Zeng, J. Xiong, et al., J. Alloys Compd. 912 (2022) 165063.

    58. [58]

      X. Li, E. Almatrafi, H. Wang, et al., Chem. Eng. J. 457 (2023) 141087.

    59. [59]

      B. Li, X. Zhao, Y. Huang, et al., Environ. Sci. Pollut. R 30 (2023) 122537.  doi: 10.1007/s11356-023-30909-7

  • 加载中
    1. [1]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    5. [5]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    11. [11]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    12. [12]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    13. [13]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    14. [14]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    15. [15]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    16. [16]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Shouchao ZhongYue WangMingshu XieYiqian WuJiuqiang LiJing PengLiyong YuanMaolin ZhaiWeiqun Shi . Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 2025, 36(5): 110312-. doi: 10.1016/j.cclet.2024.110312

    19. [19]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    20. [20]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return