Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide
-
* Corresponding authors.
E-mail addresses: xiaowei1992@tzc.edu.cn (W. Xiao), jie_wu@fudan.edu.cn (J. Wu).
Citation:
Minjun Yin, Yuhui Lin, Manli Zhuang, Wei Xiao, Jie Wu. Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide[J]. Chinese Chemical Letters,
;2025, 36(3): 109926.
doi:
10.1016/j.cclet.2024.109926
M. Feng, B. Tang, H.S. Liang, X. Jiang, Curr. Top. Med. Chem. 16 (2016) 1200–1216.
doi: 10.2174/1568026615666150915111741
K.A. Scott, J.T. Njardarson, Top. Curr. Chem. 376 (2018) 5.
doi: 10.1007/s41061-018-0184-5
H. Eto, Y. Kaneko, S. Takeda, et al., Chem. Pharm. Bull. 49 (2001) 173–182.
doi: 10.1248/cpb.49.173
R.K. Bruick, Y. Chen, J.C.F. Ruiz, Patent, WO2016057242A1, 2016.
C. A.G. Bayer, Patent, WO2009080203, 2009.
W. Zhang, W. Huang, J. Hu, Angew. Chem. Int. Ed. 48 (2009) 9858–9861.
doi: 10.1002/anie.200905077
L. Zhu, Y. Li, Y. Zhao, J. Hu, Tetrahedron Lett. 51 (2010) 6150–6152.
doi: 10.1016/j.tetlet.2010.09.068
G.K.S. Prakash, C. Ni, F. Wang, J. Hu, G.A. Olah, Angew. Chem. Int. Ed. 50 (2011) 2559–2563.
doi: 10.1002/anie.201007594
W. Huang, C. Ni, Y. Zhao, B. Gao, J. Hu, J. Fluorine Chem. 143 (2012) 161–166.
doi: 10.1016/j.jfluchem.2012.05.018
W. Huang, C. Ni, Y. Zhao, et al., Tetrahedron 68 (2012) 5137–5144.
doi: 10.1016/j.tet.2012.04.039
H. Jia, A.P. Häring, F. Berger, L. Zhang, T. Ritter, J. Am. Chem. Soc. 143 (2021) 7623–7628.
doi: 10.1021/jacs.1c02606
Y. Li, X. Liang, K. Niu, et al., Org. Lett. 24 (2022) 5918–5923.
doi: 10.1021/acs.orglett.2c02150
Y.M. Su, Y. Hou, F. Yin, et al., Org. Lett. 24 (2022) 2958–2961.
W. Miao, C. Ni, Y. Zhao, J. Hu, Org. Lett. 18 (2016) 2766–2769.
doi: 10.1021/acs.orglett.6b01258
J. Rong, L. Deng, P. Tan, et al., Angew. Chem. Int. Ed. 55 (2016) 2743–2747.
doi: 10.1002/anie.201510533
J. Xie, T. Zhang, F. Chen, et al., Angew. Chem. Int. Ed. 55 (2016) 2934–2938.
doi: 10.1002/anie.201508622
J. Chen, J.H. Lin, J.C. Xiao, Tetrahedron 74 (2018) 4295–4297.
doi: 10.1016/j.tet.2018.06.062
Y.J. Zhu, Z.L. Lei, D.K. Huang, et al., Tetrahedron Lett. 59 (2018) 3184–3187.
doi: 10.1016/j.tetlet.2018.07.021
P. Xiao, C. Ni, W. Miao, et al., J. Org. Chem. 84 (2019) 8345–8359.
doi: 10.1021/acs.joc.9b00419
E. Nobile, T. Castanheiro, T. Besset, Chem. Commun. 57 (2021) 12337–12340.
doi: 10.1039/d1cc04737j
H. Uno, K. Kawai, T. Araki, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 61 (2022) e202117635.
doi: 10.1002/anie.202117635
E. Nobile, F. Doche, T. Castanheiro, D.G. Musaev, T. Besset, Chem. Eur. J. 30 (2024) e202303362.
doi: 10.1002/chem.202303362
W.B. He, S.J. Zhao, J.Y. Chen, et al., Chin. Chem. Lett. 34 (2023) 107640.
doi: 10.1016/j.cclet.2022.06.063
H.T. Ji, K.L. Wang, W.T. Ouyang, et al., Green Chem. 25 (2023) 7983–7987.
doi: 10.1039/d3gc02575f
J. Chen, G. Zhu, J. Wu, Acta Chim. Sin. 81 (2023) 1609–1623.
doi: 10.6023/a23070339
Y.H. Lu, C. Wu, J.C. Hou, et al., ACS Catal. 13 (2023) 13071–13076.
doi: 10.1021/acscatal.3c02268
W.T. Ouyang, H.T. Ji, J. Jiang, et al., Chem. Commun. 59 (2023) 14029–14032.
doi: 10.1039/d3cc04020h
J. Huang, J. Wu, Acta Chim. Sin. 81 (2023) 520–532.
doi: 10.6023/A23030088
Z. Wang, N. Meng, Y. Lv, et al., Chin. Chem. Lett. 34 (2023) 107599.
doi: 10.1016/j.cclet.2022.06.022
H.Y. Song, J. Jiang, Y.H. Song, et al., Chin. Chem. Lett. 35 (2024) 109246.
doi: 10.1016/j.cclet.2023.109246
G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405–10414.
doi: 10.1039/c8cc05847d
D.Q. Dong, Q.Q. Han, et al., ChemistrySelect 5 (2020) 13103-10134.
doi: 10.1002/slct.202003650
S. Ye, X. Li, W. Xie, J. Wu, Eur. J. Org. Chem. 2020 (2020) 1274–1287.
doi: 10.1002/ejoc.201900396
K. Hofman, N. Liu, G. Manolikakes, Chem. Eur. J. 24 (2018) 11852–11863.
doi: 10.1002/chem.201705470
G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405–10414.
doi: 10.1039/c8cc05847d
Y. Li, D. Huang, D. Deng, S.R. Guo, Cur. Org. Chem. 26 (2022) 369–381.
doi: 10.2174/1385272826666220222110614
Y. Wu, Y. Yan, W. Liao, Chin. J. Org. Chem. 43 (2023) 3713–3727.
doi: 10.6023/cjoc202305014
J. Zhang, P. Wang, Y. Li, J. Wu, Chem. Commun. 59 (2023) 3821–3826.
doi: 10.1039/d2cc06339e
G. Chen, Z. Lian, Eur. J. Org. Chem. 26 (2023) e202300217.
doi: 10.1002/ejoc.202300217
S. Chen, Y. Li, M. Wang, X. Jiang, Green Chem. 22 (2020) 322–326.
doi: 10.1039/C9GC03841H
X. Gong, M. Yang, J.B. Liu, et al., Green Chem. 22 (2020) 1906–1910.
doi: 10.1039/d0gc00332h
Y. Li, S. Chen, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 8907–8911.
doi: 10.1002/anie.202001589
X. Jia, S. Kramer, T. Skrydstrup, Z. Lian, Angew. Chem. Int. Ed. 60 (2021) 7353–7359.
doi: 10.1002/anie.202014111
Y. Li, S. Chen, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 8907–8911.
doi: 10.1002/anie.202001589
Y. Meng, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 1346–1353.
doi: 10.1002/anie.201911449
H. Zhang, M. Wang, X. Jiang, Green Chem. 22 (2020) 8238–8242.
doi: 10.1039/d0gc03135f
S. Jin, G.C. Haug, R. Trevino, et al., Chem. Sci. 12 (2021) 13914–13921.
doi: 10.1039/d1sc04245a
T. Zhong, J.T. Yi, Z.D. Chen, et al., Chem. Sci. 12 (2021) 9359–9365.
doi: 10.1039/d1sc02503a
L. Chen, X. Zhang, M. Zhou, et al., ACS Catal. 12 (2022) 10764–10770.
doi: 10.1021/acscatal.2c02297
F.S. He, C. Zhang, M. Jiang, et al., Chem. Sci. 13 (2022) 8834–8839.
doi: 10.1039/d2sc02497g
J. Huang, F. Liu, L.H. Zeng, et al., Nat. Commun. 13 (2022) 7081.
doi: 10.1038/s41467-022-34836-y
T.S.B. Lou, Y. Kawamata, T. Ewing, et al., Angew. Chem. Int. Ed. 61 (2022) e202208080.
doi: 10.1002/anie.202208080
C. Zhang, M. Yang, Y. Qiu, et al., Chem. Sci. 13 (2022) 11785–11791.
doi: 10.1039/d2sc04027a
M. Chen, W. Sun, J. Yang, et al., Green Chem. 25 (2023) 3857–3863.
doi: 10.1039/d3gc01059g
M. Zhang, L. Liu, B. Wang, et al., ACS Catal. 13 (2023) 11580–11588.
doi: 10.1021/acscatal.3c03096
F.S. He, Y. Yao, W. Xie, J. Wu, Chem. Commun. 56 (2020) 9469–9472.
doi: 10.1039/d0cc03591b
F.S. He, P. Bao, Z. Tang, et al., Org. Lett. 24 (2022) 2955–2960.
doi: 10.1021/acs.orglett.2c01132
Z. Li, X. Qiu, J. Lou, Q. Wang, Chin. J. Org. Chem. 41 (2021) 4192–4207.
doi: 10.6023/cjoc202106013
P. Sorrentino, R.A. Altman, Synthesis 53 (2021) 3935–3950.
doi: 10.1055/a-1547-9270
M.O. Zubkov, M.D. Kosobokov, A.D. Dilman, Russ. J. Org. Chem. 57 (2021) 1017–1035.
doi: 10.1134/s1070428021070010
S.S. Yan, D.S. Wu, J.H. Ye, et al., ACS Catal. 9 (2019) 6987–6992.
doi: 10.1021/acscatal.9b02351
C.J. Lu, X. Yu, Y.T. Chen, Q.B. Song, H. Wang, Org. Chem. Front. 7 (2020) 2313–2318.
doi: 10.1039/d0qo00553c
Y. Wang, Q. Ma, G.C. Tsui, Org. Lett. 23 (2021) 5241–5245.
doi: 10.1021/acs.orglett.1c01768
L. Ge, C. Zhang, C. Pan, et al., Nat. Commun. 13 (2022) 5938.
doi: 10.1038/s41467-022-33602-4
F. Liu, Z. Zhuang, Q. Qian, X. Zhang, C. Yang, J. Org. Chem. 87 (2022) 2730–2739.
doi: 10.1021/acs.joc.1c02662
X. Liu, J. Wu, C. Zhang, Org. Lett. 25 (2023) 1564–1568.
doi: 10.1021/acs.orglett.3c00347
Y.T. Liu, Y.H. Fan, Y. Mei, et al., Org. Lett. 25 (2023) 549–554.
doi: 10.1021/acs.orglett.3c00016
H. Tan, Y. Zong, Y. Tang, G.C. Tsui, Org. Lett. 25 (2023) 877–882.
doi: 10.1021/acs.orglett.3c00108
Y. Zhang, J. Wang, Y. Guo, S. Liu, X. Shen, Angew. Chem. Int. Ed. 63 (2024) e202315269.
doi: 10.1002/anie.202315269
H. Liu, L. Ge, D.X. Wang, N. Chen, C. Feng, Angew. Chem. Int. Ed. 58 (2019) 3918–3922.
doi: 10.1002/anie.201814308
W.J. Yoo, J. Kondo, J.A. Angew, Chem. Int. Ed 58 (2019) 6772–6775.
doi: 10.1002/anie.201902779
T.Y. Lin, Z. Pan, Y. Tu, et al., Angew. Chem. Int. Ed. 59 (2020) 22957–22962.
doi: 10.1002/anie.202008262
R. Chen, D. Yin, L. Lu, et al., Org. Lett 25 (2023) 7293–7297.
doi: 10.1021/acs.orglett.3c02512
X. Yu, A. Maity, A. Studer, Angew. Chem. Int. Ed. 62 (2023) e202310288.
doi: 10.1002/anie.202310288
W. Zhu, H. Xi, W. Jiao, et al., Org. Lett. 24 (2022) 720–725.
doi: 10.1021/acs.orglett.1c04165
P. Bao, F. Yu, F.S. He, et al., Org. Chem. Front. 8 (2021) 4820–4825.
doi: 10.1039/d1qo00732g
J.Q. Chen, N. Liu, Q. Hu, et al., Org. Chem. Front. 8 (2021) 5316–5321.
doi: 10.1039/d1qo00957e
F.S. He, P. Bao, F. Yu, et al., Org. Lett. 23 (2021) 7472–7476.
doi: 10.1021/acs.orglett.1c02665
F.S. He, Y. Yao, Z. Tang, et al., Chem. Commun. 57 (2021) 12603–12606.
doi: 10.1039/d1cc05690e
F.S. He, M. Zhang, M. Zhang, X. Luo, J. Wu, Org. Chem. Front. 8 (2021) 3746–3751.
doi: 10.1039/d1qo00556a
J. Huang, F. Ding, Z. Chen, G. Yang, J. Wu, Org. Chem. Front. 8 (2021) 1461–1465.
doi: 10.1039/d0qo01546f
X. Tu, J. Huang, W. Xie, T. Zhu, J. Wu, Org. Chem. Front. 8 (2021) 1789–1794.
doi: 10.1039/d0qo01551b
M. Yang, X. Chang, S. Ye, Q. Ding, J. Wu, J. Org. Chem. 86 (2021) 15177–15184.
doi: 10.1021/acs.joc.1c01778
Y. Yao, Z. Yin, F.S. He, et al., Chem. Commun. 57 (2021) 2883–2886.
doi: 10.1039/d0cc07927h
C. Zhang, C. Zhang, J. Tang, et al., Adv. Synth. Catal. 363 (2021) 3109–3114.
doi: 10.1002/adsc.202100066
T. Zhu, J. Shen, Y. Sun, J. Wu, Chem. Commun. 57 (2021) 915–918.
doi: 10.1039/d0cc07632e
F. Liu, J. Huang, X. Wu, et al., J. Org. Chem. 87 (2022) 6137–6145.
doi: 10.1021/acs.joc.2c00381
Y. Qiu, J. Yao, H. Xia, et al., Adv. Synth. Catal. 365 (2023) 3392–3396.
doi: 10.1002/adsc.202300839
C. Chen, Z.J. Wang, H. Lu, Y. Zhao, Z. Shi, Nat. Commun. 12 (2021) 4526.
doi: 10.1038/s41467-021-24716-2
Y. Zhao, C. Yu, W. Liang, F.W. Patureau, Org. Lett. 23 (2021) 6232–6236.
doi: 10.1021/acs.orglett.1c01904
M.J. Cabrera-Afonso, A. Granados, G.A. Molander, Angew. Chem. Int. Ed. 61 (2022) e202202706.
doi: 10.1002/anie.202202706
X. Li, W. Si, Z. Liu, et al., Org. Lett. 24 (2022) 4070–4074.
doi: 10.1021/acs.orglett.2c01525
M. Liu, Y. Qian, Y. Wu, F. Zhang, Green Chem. 25 (2023) 3852–3856.
doi: 10.1039/d3gc00336a
W. Liu, H. Hou, H. Jing, et al., Org. Lett. 25 (2023) 8350–8355.
doi: 10.1021/acs.orglett.3c03473
H. Xu, X. Li, Y. Dong, et al., Org. Lett. 25 (2023) 3784–3789.
doi: 10.1021/acs.orglett.3c01303
W. Qi, S. Gu, L.G. Xie, Org. Lett. 26 (2024) 728–733.
doi: 10.1021/acs.orglett.3c04183
H. Xu, X. Li, Y. Wang, et al., Org. Lett. 26 (2024) 1845–1850.
doi: 10.1021/acs.orglett.4c00017
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jun Jiang , Tong Guo , Wuxin Bai , Mingliang Liu , Shujun Liu , Zhijie Qi , Jingwen Sun , Shugang Pan , Aleksandr L. Vasiliev , Zhiyuan Ma , Xin Wang , Junwu Zhu , Yongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472