-
[1]
E.A. Pumford, J. Lu, I. Spaczai, et al., Biosens. Bioelectron. 170 (2020) 112674.
doi: 10.1016/j.bios.2020.112674
-
[2]
Y. Chen, C. Qian, C. Liu, et al., Biosens. Bioelectron. 153 (2020) 112049.
doi: 10.1016/j.bios.2020.112049
-
[3]
M. Li, F. Yin, L. Song, et al., Chem. Rev. 121 (2021) 10469–10558.
doi: 10.1021/acs.chemrev.1c00241
-
[4]
R. Ramesh, A. Munshi, S.K. Panda, Natl. Med. J. India 5 (1992) 115–119.
-
[5]
M.R. Green, J. Sambrook, Cold Spring Harb. Protoc. 2018 (2018) 769–777.
doi: 10.1101/pdb.prot095117
-
[6]
B. Vogelstein, K.W. Kinzler, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 9236–9241.
doi: 10.1073/pnas.96.16.9236
-
[7]
P.L. Quan, M. Sauzade, E. Brouzes, Sensors 18 (2018) 1271.
doi: 10.3390/s18041271
-
[8]
Y. Li, P. Fan, S. Zhou, L. Zhang, Microb. Pathogenesis 107 (2017) 54–61.
doi: 10.3390/e19020054
-
[9]
A. James, J. Macdonald, Expert. Rev. Mol. Diagn. 15 (2015) 1475–1489.
doi: 10.1586/14737159.2015.1090877
-
[10]
G.T. Walker, M.C. Little, J.G. Nadeau, D.D. Shank, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 392–396.
doi: 10.1073/pnas.89.1.392
-
[11]
J.C. Guatelli, K.M. Whitfield, D.Y. Kwoh, et al., Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 1874–1878.
doi: 10.1073/pnas.87.5.1874
-
[12]
P.M. Lizardi, X. Huang, Z. Zhu, et al., Nat. Genet. 19 (1998) 225–232.
doi: 10.1038/898
-
[13]
P. Craw, W. Balachandran, Lab Chip 12 (2012) 2469–2486.
doi: 10.1039/c2lc40100b
-
[14]
P.J. Asiello, A.J. Baeumner, Lab Chip 11 (2011) 1420–1430.
doi: 10.1039/c0lc00666a
-
[15]
P. Gill, A. Ghaemi, Nucleos. Nucleot. Nucl. 27 (2008) 224–243.
doi: 10.1080/15257770701845204
-
[16]
Y. Zhao, F. Chen, Q. Li, et al., Chem. Rev. 115 (2015) 12491–12545.
doi: 10.1021/acs.chemrev.5b00428
-
[17]
A. Gansen, A.M. Herrick, I.K. Dimov, et al., Lab Chip 12 (2012) 2247–2254.
doi: 10.1039/c2lc21247a
-
[18]
J.E. Kreutz, J. Wang, A.M. Sheen, et al., Lab Chip 19 (2019) 1035–1040.
doi: 10.1039/c8lc01223g
-
[19]
J. Wang, J.P. Staheli, A. Wu, et al., Anal. Chem. 93 (2021) 3266–3272.
doi: 10.1021/acs.analchem.0c04973
-
[20]
Q. Zhu, Y. Gao, B. Yu, et al., Lab Chip 12 (2012) 4755–4763.
doi: 10.1039/c2lc40774d
-
[21]
B. Pang, X. Ding, G. Wang, et al., J. Agr. Food. Chem. 65 (2017) 11312–11319.
doi: 10.1021/acs.jafc.7b03655
-
[22]
N. Rong, K. Chen, J. Shao, et al., Anal. Chem. 95 (2023) 7830–7838.
doi: 10.1021/acs.analchem.2c05288
-
[23]
D.A. Selck, M.A. Karymov, B. Sun, R.F. Ismagilov, Anal. Chem. 85 (2013) 11129–11136.
doi: 10.1021/ac4030413
-
[24]
B. Sun, F. Shen, S.E. McCalla, et al., Anal. Chem. 85 (2013) 1540–1546.
doi: 10.1021/ac3037206
-
[25]
E.M. Khorosheva, M.A. Karymov, D.A. Selck, R.F. Ismagilov, Nucleic Acids Res. 44 (2016) e10.
doi: 10.1093/nar/gkv877
-
[26]
J. Rodriguez-Manzano, M.A. Karymov, S. Begolo, et al., ACS Nano 10 (2016) 3102–3113.
doi: 10.1021/acsnano.5b07338
-
[27]
M. Yu, X. Chen, H. Qu, et al., Anal. Chem. 91 (2019) 8751–8755.
doi: 10.1021/acs.analchem.9b01270
-
[28]
Z. Yu, W. Lyu, M. Yu, et al., Biosens. Bioelectron. 155 (2020) 112107.
doi: 10.1016/j.bios.2020.112107
-
[29]
X. Lin, X. Huang, Y. Zhu, et al., ACS Nano 12 (2018) 10281–10290.
doi: 10.1021/acsnano.8b05384
-
[30]
X. Lin, X. Huang, K. Urmann, et al., ACS Sens. 4 (2019) 242–249.
doi: 10.1021/acssensors.8b01419
-
[31]
Y. Yan, T. Yang, Z. Luo, et al., Food. Chem. 408 (2023) 135226.
doi: 10.1016/j.foodchem.2022.135226
-
[32]
L. Cao, X. Guo, P. Mao, et al., ACS Sens. 6 (2021) 3564–3574.
doi: 10.1021/acssensors.1c00603
-
[33]
T. Yang, D. Li, Y. Yan, et al., J. Hazard. Mater. 442 (2023) 130050.
doi: 10.1016/j.jhazmat.2022.130050
-
[34]
C. Yi, Z. Luo, Y. Lu, et al., Biosens. Bioelectron. 184 (2021) 113199.
doi: 10.1016/j.bios.2021.113199
-
[35]
X. Lin, M. Fang, C. Yi, et al., Biomaterials 280 (2022) 121278.
doi: 10.1016/j.biomaterials.2021.121278
-
[36]
Y.D. Ma, K. Luo, W.H. Chang, G.B. Lee, Lab Chip 18 (2018) 296–303.
doi: 10.1039/c7lc01004d
-
[37]
M. Azizi, M. Zaferani, S.H. Cheong, A. Abbaspourrad, ACS Sens. 4 (2019) 841–848.
doi: 10.1021/acssensors.8b01206
-
[38]
F. Liu, A. Ge, C. Li, et al., Anal. Chem. 95 (2023) 6672–6680.
doi: 10.1021/acs.analchem.3c00239
-
[39]
S. Friedrich, S. Clara, H. Sebastian, et al., Anal. Methods-UK 8 (2016) 2750–2755.
doi: 10.1039/C6AY00600K
-
[40]
H. Peng, M. Zhu, Z. Gao, et al., Biomed. Microdevices 22 (2020) 18.
doi: 10.1007/s10544-020-0475-9
-
[41]
M. Jiang, P. Liao, Y. Sun, et al., Lab Chip 21 (2021) 2265–2271.
doi: 10.1039/d1lc00114k
-
[42]
Z. Zhang, Y. Cheng, X. Li, et al., Anal. Chem. 95 (2023) 3028–3036.
doi: 10.1021/acs.analchem.2c05110
-
[43]
Y. Hu, P. Xu, J. Luo, et al., Anal. Chem. 89 (2017) 745–750.
doi: 10.1021/acs.analchem.6b03328
-
[44]
Z. Pan, Y. Men, S. Senapati, H.C. Chang, Biomicrofluidics 12 (2018) 044113.
doi: 10.1063/1.5048307
-
[45]
L. Chen, J. Ding, H. Yuan, et al., Adv. Sci. 9 (2022) e2105450.
doi: 10.1002/advs.202105450
-
[46]
H. Yuan, Y. Chao, S. Li, et al., Anal. Chem. 90 (2018) 13173–13177.
doi: 10.1021/acs.analchem.8b03673
-
[47]
F. Hu, J. Li, Z. Zhang, et al., Anal. Chem. 92 (2020) 2258–2265.
doi: 10.1021/acs.analchem.9b04967
-
[48]
B. Oliveira, B. Veigas, A.R. Fernandes, et al., Sensors 20 (2020) 1624.
doi: 10.3390/s20061624
-
[49]
B.J. Coelho, B. Veigas, H. Águas, et al., Sensors 17 (2017) 2616.
doi: 10.3390/s17112616
-
[50]
L. Wan, T. Chen, J. Gao, et al., Sci. Rep. 7 (2017) 14586.
doi: 10.1038/s41598-017-14698-x
-
[51]
L. Cao, X. Guo, P. Mao, et al., ACS. Sens. 6 (2021) 3564–3574.
doi: 10.1021/acssensors.1c00603
-
[52]
L. Jiang, X. Lan, L. Ren, et al., Microsyst. Nanoeng. 9 (2023) 118.
doi: 10.1038/s41378-023-00576-2
-
[53]
J. Chen, X. Xu, Z. Huang, et al., Chem. Commun. 54 (2018) 291–294.
doi: 10.1039/C7CC08403J
-
[54]
T.D. Rane, L. Chen, H.C. Zec, T.H. Wang, Lab Chip 15 (2015) 776–782.
doi: 10.1039/C4LC01158A
-
[55]
S.A. Hsieh, D. Shamsaei, D.R. Eitzmann, J.L. Anderson, Anal. Chem. 94 (2022) 11949–11956.
doi: 10.1021/acs.analchem.2c02979
-
[56]
C. Wu, L. Liu, Z. Ye, et al., Anal. Chim. Acta 1233 (2022) 340513.
doi: 10.1016/j.aca.2022.340513
-
[57]
Y. Xue, X. Luo, X. Pang, et al., Anal. Biochem. 631 (2021) 114371.
doi: 10.1016/j.ab.2021.114371
-
[58]
J. Jarvius, J. Melin, J. Göransson, et al., Nat. Methods 3 (2006) 725–727.
doi: 10.1038/nmeth916
-
[59]
L. Mazutis, A.F. Araghi, O.J. Miller, et al., Anal. Chem. 81 (2009) 4813–4821.
doi: 10.1021/ac900403z
-
[60]
K. Wang, X. Bai, Y. Xue, et al., Sensor Actuat. B: Chem. 375 (2023) 132893.
doi: 10.1016/j.snb.2022.132893
-
[61]
H. Zhian, X. Fujian, S. Gongwei, et al., Chem. Commun. 56 (2020) 5409–5412.
doi: 10.1039/D0CC01530J
-
[62]
J. Björkesten, S. Patil, C. Fredolini, et al., Nucleic Acids Res. 48 (2020) e73.
doi: 10.1093/nar/gkaa419
-
[63]
S. Ciftci, F. Neumann, S. Abdurahman, et al., J. Mol. Diagn. 22 (2020) 272–283.
doi: 10.1016/j.jmoldx.2019.10.014
-
[64]
M. Kühnemund, D. Witters, M. Nilsson, J. Lammertyn, Lab Chip 14 (2014) 2983–2992.
doi: 10.1039/C4LC00348A
-
[65]
M. Kühnemund, I. Hernández-Neuta, M.I. Sharif, et al., Nucleic Acids Res. 45 (2017) e59.
doi: 10.1093/nar/gkw1324
-
[66]
R.K. Daher, G. Stewart, M. Boissinot, M.G. Bergeron, Clin. Chem. 62 (2016) 947–958.
doi: 10.1373/clinchem.2015.245829
-
[67]
Z. Li, Y. Liu, Q. Wei, et al., PLoS ONE 11 (2016) e0153359.
doi: 10.1371/journal.pone.0153359
-
[68]
S. Santiago-Felipe, L.A. Tortajada-Genaro, R. Puchades, Á. Maquieira, Microchim. Acta 183 (2016) 1195–1202.
doi: 10.1007/s00604-016-1745-3
-
[69]
E.C. Yeh, C.C. Fu, L. Hu, et al., Sci. Adv. 3 (2017) e1501645.
doi: 10.1126/sciadv.1501645
-
[70]
F. Shen, E.K. Davydova, W. Du, et al., Anal. Chem. 83 (2011) 3533–3540.
doi: 10.1021/ac200247e
-
[71]
X. Li, A. Manz, Sensor Actuat. B: Chem. 288 (2019) 678–682.
doi: 10.1016/j.snb.2019.02.112
-
[72]
L.A. Tortajada-Genaro, S. Santiago-Felipe, M. Amasia, et al., RSC Adv. 5 (2015) 29987–29995.
doi: 10.1039/C5RA02778K
-
[73]
F. Schuler, F. Schwemmer, M. Trotter, et al., Lab Chip 15 (2015) 2759–2766.
doi: 10.1039/C5LC00291E
-
[74]
J. Yin, Z. Zou, Z. Hu, et al., Lab Chip 20 (2020) 979–986.
doi: 10.1039/c9lc01143a
-
[75]
Z. Qin, X. Xiang, L. Xue, et al., Microchem. J. 164 (2021) 106050.
doi: 10.1016/j.microc.2021.106050
-
[76]
B. Deiman, P. van Aarle, P. Sillekens, Mol. Biotechnol. 20 (2002) 163–179.
doi: 10.1385/MB:20:2:163
-
[77]
G. Leone, H. van Schijndel, B. van Gemen, et al., Nucleic Acids Res. 26 (1998) 2150–2155.
doi: 10.1093/nar/26.9.2150
-
[78]
J.J. Weusten, W.M. Carpay, T.A. Oosterlaken, et al., Nucleic Acids Res. 30 (2002) e26.
doi: 10.1093/nar/30.6.e26
-
[79]
J. Wang, J.E. Kreutz, A.M. Thompson, et al., Lab Chip 18 (2018) 3501–3506.
doi: 10.1039/c8lc00956b
-
[80]
F.B. Dean, S. Hosono, L. Fang, et al., Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 5261–5266.
doi: 10.1073/pnas.082089499
-
[81]
L. Huang, F. Ma, A. Chapman, et al., Annu. Rev. Genom. Hum. G 16 (2015) 79–102.
doi: 10.1146/annurev-genom-090413-025352
-
[82]
X. Xiang, Y. Shang, J. Zhang, et al., Trac-Trend. Anal. Chem. 149 (2022) 116568-116551.
doi: 10.1016/j.trac.2022.116568
-
[83]
J. Sabina, J.H. Leamon, Methods. Mol. Biol. 1347 (2015) 15–41.
doi: 10.1007/978-1-4939-2990-0_2
-
[84]
L. Xu, I.L. Brito, E.J. Alm, P.C. Blainey, Nat. Methods 13 (2016) 759–762.
doi: 10.1038/nmeth.3955
-
[85]
S.C. Kim, G. Premasekharan, I.C. Clark, et al., Microsyst. Nanoeng. 3 (2017) 17018.
doi: 10.1038/micronano.2017.18
-
[86]
Y. Qiao, W. Liu, N. Lu, et al., Anal. Chim. Acta 1141 (2021) 173–179.
doi: 10.1016/j.aca.2020.10.031
-
[87]
J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee, et al., Science 356 (2017) 438–442.
doi: 10.1126/science.aam9321
-
[88]
J.S. Chen, E. Ma, L.B. Harrington, et al., Science 360 (2018) 436–439.
doi: 10.1126/science.aar6245
-
[89]
O.O. Abudayyeh, J.S. Gootenberg, S. Konermann, et al., Science 353 (2016) aaf5573.
doi: 10.1126/science.aaf5573
-
[90]
I.J. Chen, T. Wu, S. Hu, Methods X 5 (2018) 984–990.
doi: 10.1016/j.mex.2018.08.008
-
[91]
M. Patchsung, K. Jantarug, A. Pattama, et al., Nat. Biomed. Eng. 4 (2020) 1140–1149.
doi: 10.1038/s41551-020-00603-x
-
[92]
H. Yue, B. Shu, T. Tian, et al., Nano. Lett. 21 (2021) 4643–4653.
doi: 10.1021/acs.nanolett.1c00715
-
[93]
J.S. Park, K. Hsieh, L. Chen, et al., Adv. Sci. 8 (2021) 2003564.
doi: 10.1002/advs.202003564
-
[94]
X. Wu, J.K. Tay, C.K. Goh, et al., Biomaterials 274 (2021) 120876.
doi: 10.1016/j.biomaterials.2021.120876
-
[95]
F.X. Liu, J.Q. Cui, H. Park, et al., Anal. Chem. 94 (2022) 5883–5892.
doi: 10.1021/acs.analchem.2c00067
-
[96]
J.Q. Cui, F.X. Liu, H. Park, et al., Biosens. Bioelectron. 202 (2022) 114019.
doi: 10.1016/j.bios.2022.114019
-
[97]
L. Xia, J. Yin, J. Zhuang, et al., Anal. Chem. 95 (2023) 4744–4752.
doi: 10.1021/acs.analchem.2c05560
-
[98]
C. Zhang, Z. Cai, Z. Zhou, et al., Biosens. Bioelectron. 222 (2023) 114956.
doi: 10.1016/j.bios.2022.114956
-
[99]
X. Ding, K. Yin, Z. Li, et al., Biosens. Bioelectron. 184 (2021) 113218.
doi: 10.1016/j.bios.2021.113218
-
[100]
H. Wu, X. Cao, Y. Meng, et al., Biosens. Bioelectron. 211 (2022) 114377.
doi: 10.1016/j.bios.2022.114377
-
[101]
Z. Yu, L. Xu, W. Lyu, F. Shen, Lab Chip 10 (2022) 21886.
-
[102]
X. Luo, Y. Xue, E. Ju, et al., Anal. Chim. Acta 1192 (2021) 339336.
doi: 10.1016/j.aca.2021.339336
-
[103]
X. Wu, C. Chan, S.L. Springs, et al., Anal. Chim. Acta 1196 (2022) 339494.
doi: 10.1016/j.aca.2022.339494
-
[104]
T. Tian, B. Shu, Y. Jiang, et al., ACS. Nano 15 (2021) 1167–1178.
doi: 10.1021/acsnano.0c08165
-
[105]
H. Shinoda, Y. Taguchi, R. Nakagawa, et al., Commun. Biol. 4 (2021) 476.
doi: 10.1038/s42003-021-02001-8
-
[106]
H. Shinoda, T. Iida, A. Makino, et al., Commun. Biol. 5 (2022) 473.
doi: 10.1038/s42003-022-03433-6
-
[107]
D. Wang, X. Wang, F. Ye, et al., ACS. Nano 17 (2023) 7250–7256.
doi: 10.1021/acsnano.2c10143
-
[108]
A. Ramachandran, J.G. Santiago, Anal. Chem. 93 (2021) 7456–7464.
doi: 10.1021/acs.analchem.1c00525
-
[109]
Y. Xue, X. Luo, W. Xu, et al., Anal. Chem. 95 (2023) 966–975.
-
[110]
T. Yu, S. Zhang, R. Matei, et al., Aiche. J. 67 (2021) e17365.
doi: 10.1002/aic.17365
-
[111]
H. Yuan, Y.C. Chao, H.C. Shum, Small 16 (2020) 1904469.
doi: 10.1002/smll.201904469
-
[112]
D. Cai, Y. Wang, J. Zou, et al., Adv. Sci. 10 (2023) e2205863.
doi: 10.1002/advs.202205863
-
[113]
K. Wu, Q. Fang, Z. Zhao, Z. Li, Anal. Chem. 95 (2023) 5069–5078.
doi: 10.1021/acs.analchem.2c05665