Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis
-
* Corresponding authors.
E-mail addresses: qujianggaofeng@163.com (J. Qu), gejunjie@ustc.edu.cn (J. Ge).
Citation:
Jiawei Ge, Xian Wang, Heyuan Tian, Hao Wan, Wei Ma, Jiangying Qu, Junjie Ge. Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis[J]. Chinese Chemical Letters,
;2025, 36(5): 109906.
doi:
10.1016/j.cclet.2024.109906
S. Chu, A. Majumdar, Nature 488 (2012) 294–303.
doi: 10.1038/nature11475
Z. Liu, Z. Deng, S. Davis, P. Ciais, Nat. Rev. Earth Environ. 4 (2023) 205–206.
doi: 10.1038/s43017-023-00406-z
Z. Lei, T. Wang, B. Zhao, et al., Adv. Energy Mater. 10 (2020) 2000478.
doi: 10.1002/aenm.202000478
O.S. Bushuyev, P. De Luna, C.T. Dinh, et al., Joule 2 (2018) 825–832.
doi: 10.1016/j.joule.2017.09.003
P. Moriarty, D. Honnery, Int. J. Hydr. Energy 32 (2007) 1616–1624.
doi: 10.1016/j.ijhydene.2006.12.008
G. Glenk, S. Reichelstein, Nat. Energy 4 (2019) 216–222.
doi: 10.1038/s41560-019-0326-1
M. Chatenet, B.G. Pollet, D.R. Dekel, et al., Chem. Soc. Rev. 51 (2022) 4583–4762.
doi: 10.1039/d0cs01079k
R.T. Liu, Z.L. Xu, F.M. Li, et al., Chem. Soc. Rev. 52 (2023) 5652–5683.
doi: 10.1039/d2cs00681b
L. Chong, G. Gao, J. Wen, et al., Science 380 (2023) 609–616.
doi: 10.1126/science.ade1499
A. Weiß, A. Siebel, M. Bernt, et al., J. Electrochem. Soc. 166 (2019) F487–F497.
doi: 10.1149/2.0421908jes
T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater. 7 (2017) 1601275.
doi: 10.1002/aenm.201601275
L.W. Chen, H.W. Liang, Catal. Sci. Technol. 11 (2021) 4673–4689.
doi: 10.1039/d1cy00650a
L. An, C. Wei, M. Lu, et al., Adv. Mater. 33 (2021) 2006328.
doi: 10.1002/adma.202006328
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060–2086.
doi: 10.1039/C4CS00470A
N.T. Suen, S.F. Hung, Q. Quan, et al., Chem. Soc. Rev. 46 (2017) 337–365.
doi: 10.1039/C6CS00328A
K. Zhang, X. Liang, L. Wang, et al., Nano Res. Energy 1 (2022) e9120032.
doi: 10.26599/nre.2022.9120032
C. Wang, Q. Zhang, B. Yan, et al., Nano-Micro Lett. 15 (2023) 52.
doi: 10.1007/s40820-023-01024-6
X. Xie, L. Du, L. Yan, et al., Adv. Funct. Mater. 32 (2022) 2110036.
doi: 10.1002/adfm.202110036
S. Barwe, J. Masa, C. Andronescu, et al., Angew. Chem. Int. Ed. 56 (2017) 8573–8577.
doi: 10.1002/anie.201703963
S.R. Kelly, H.H. Heenen, N. Govindarajan, K. Chan, J.K. Nørskov, J. Phys. Chem. C 126 (2022) 5521–5528.
doi: 10.1021/acs.jpcc.1c10362
X. Shao, M. Liang, M.G. Kim, et al., Adv. Funct. Mater. 33 (2023) 2211192.
doi: 10.1002/adfm.202211192
J. Kwon, S. Sun, S. Choi, et al., Adv. Mater. 35 (2023) 2300091.
doi: 10.1002/adma.202300091
G.T.K.K. Gunasooriya, J.K. Nørskov, ACS Energy Lett. 5 (2020) 3778–3787.
doi: 10.1021/acsenergylett.0c02030
J. Yu, Q. He, G. Yang, et al., ACS Catal. 9 (2019) 9973–10011.
doi: 10.1021/acscatal.9b02457
Y. Chen, C. Liu, J. Xu, et al., Small Struct. 4 (2023) 2200130.
doi: 10.1002/sstr.202200130
H. Vogt, R.J. Balzer, Electrochim. Acta. 50 (2005) 2073–2079.
doi: 10.1016/j.electacta.2004.09.025
L. Lao, C. Ramshaw, H. Yeung, J. Appl. Electrochem. 41 (2011) 645–656.
doi: 10.1007/s10800-011-0275-2
N. Bidin, S.R. Azni, S. Islam, et al., Int. J. Hydr. Energy 42 (2017) 16325–16332.
doi: 10.1016/j.ijhydene.2017.05.169
J. Zhang, L. Zhang, J. Liu, et al., Nat. Commun. 13 (2022) 5497.
doi: 10.1038/s41467-022-33216-w
N. Zhang, Y. Chai, Energ. Environ. Sci. 14 (2021) 4647–4671.
doi: 10.1039/d1ee01277k
N.T.T. Thao, J.U. Jang, A.K. Nayak, H. Han, Small Sci. 135 (2023) 2300109.
B.S. Lee, S.H. Ahn, H.Y. Park, et al., Appl. Catal. B 179 (2015) 285–291.
doi: 10.1016/j.apcatb.2015.05.027
Z. Shi, Y. Wang, J. Li, et al., Joule 5 (2021) 2164–2176.
doi: 10.1016/j.joule.2021.05.018
Q. Wang, X. Huang, Z.L. Zhao, et al., J. Am. Chem. Soc. 142 (2020) 7425–7433.
doi: 10.1021/jacs.9b12642
J. Yin, J. Jin, M. Lu, et al., J. Am. Chem. Soc. 142 (2020) 18378–18386.
doi: 10.1021/jacs.0c05050
L. Yang, G. Yu, X. Ai, et al., Nat. Commun. 9 (2018) 5236.
doi: 10.1038/s41467-018-07678-w
P.E. Pearce, A.J. Perez, G. Rousse, et al., Nat. Mater. 16 (2017) 580–586.
doi: 10.1038/nmat4864
G. Wu, X. Zheng, P. Cui, et al., Nat. Commun. 10 (2019) 4855.
doi: 10.1038/s41467-019-12859-2
D. Wu, K. Kusada, S. Yoshioka, et al., Nat. Commun. 12 (2021) 1145.
doi: 10.1038/s41467-021-20956-4
S. Lee, Y.J. Lee, G. Lee, A. Soon, Nat. Commun. 13 (2022) 3171.
doi: 10.1038/s41467-022-30838-y
J. Cao, T. Mou, B. Mei, et al., Angew. Chem. Int. Ed. 62 (2023) e202310973.
doi: 10.1002/anie.202310973
A.R. Akbashev, V. Roddatis, C. Baeumer, et al., Energ. Environ. Sci. 16 (2023) 513–522.
doi: 10.1039/d2ee03704a
F.Y. Chen, Z.Y. Wu, Z. Adler, H. Wang, Joule 5 (2021) 1704–1731.
doi: 10.1016/j.joule.2021.05.005
Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Nano Energy 78 (2020) 105270.
doi: 10.1016/j.nanoen.2020.105270
J. Li, Nano-micro Lett. 14 (2022) 112.
doi: 10.1007/s40820-022-00857-x
C. Wang, L. Jin, H. Shang, et al., Chin. Chem. Lett. 32 (2021) 2108–2116.
doi: 10.1016/j.cclet.2020.11.051
L. Yang, L. Shi, H. Chen, et al., Adv. Mater. 35 (2023) 2208539.
doi: 10.1002/adma.202208539
I.C. Man, H.Y. Su, F.C. Vallejo, et al., ChemCatChem 3 (2011) 1159–1165.
doi: 10.1002/cctc.201000397
J.H. Montoya, L.C. Seitz, P. Chakthranont, et al., Nat. Mater. 16 (2017) 70–81.
doi: 10.1038/nmat4778
T. Wu, X. Ren, Y. Sun, et al., Nat. Commun. 12 (2021) 3634.
doi: 10.1038/s41467-021-23896-1
S. Chen, S. Zhang, L. Guo, et al., Nat. Commun. 14 (2023) 4127.
doi: 10.1038/s41467-023-39822-6
J. Shan, T. Ling, K. Davey, Y. Zheng, S.Z. Qiao, Adv. Mater. 31 (2019) e1900510.
doi: 10.1002/adma.201900510
Q. Xu, J. Zhang, H. Zhang, et al., Energy Environ. Sci. 14 (2021) 5228–5259.
doi: 10.1039/d1ee02105b
Z. Zhang, P. Ma, L. Luo, et al., Angew. Chem. Int. Ed. 62 (2023) e202216837.
doi: 10.1002/anie.202216837
X. Rong, J. Parolin, A.M. Kolpak, ACS Catal. 6 (2016) 1153–1158.
doi: 10.1021/acscatal.5b02432
S. Czioska, A. Boubnov, D. Escalera-López, et al., ACS Catal. 11 (2021) 10043–10057.
doi: 10.1021/acscatal.1c02074
R.V. Mom, L.J. Falling, O. Kasian, et al., ACS Catal. 12 (2022) 5174–5184.
doi: 10.1021/acscatal.1c05951
R. Zhang, N. Dubouis, M. BenOsman, et al., Angew. Chem. Int. Ed. 58 (2019) 4571–4575.
doi: 10.1002/anie.201814075
H. Wang, T. Zhai, Y. Wu, et al., Adv. Sci. 10 (2023) 2301706.
doi: 10.1002/advs.202301706
D. Zhong, T. Li, D. Wang, et al., Nano Res. 15 (2022) 162–169.
doi: 10.1007/s12274-021-3451-7
Y. Sun, H. Liao, J. Wang, et al., Nat. Catal. 3 (2020) 554–563.
doi: 10.1038/s41929-020-0465-6
J. Wu, W. Zou, J. Zhang, et al., Small 20 (2024) 2308419.
doi: 10.1002/smll.202308419
K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 73 (2020) 104761.
doi: 10.1016/j.nanoen.2020.104761
A. Wang, W. Wang, J. Xu, et al., Mater. Chem. Front. 7 (2023) 5187–5214.
doi: 10.1039/d3qm00588g
J. Liang, X. Gao, K. Xu, et al., Small 19 (2023) 2304889.
doi: 10.1002/smll.202304889
J. Wang, Chem 9 (2023) 1645–1657.
doi: 10.1016/j.chempr.2023.06.001
C. Lin, J.L. Li, X. Li, et al., Nat. Catal. 4 (2021) 1012–1023.
doi: 10.1038/s41929-021-00703-0
S. Bo, F. Tang, H. Su, et al., Catal. Sci. Technol. 12 (2022) 6875–6882.
doi: 10.1039/d2cy01371a
J.W. Zhao, H. Zhang, C.F. Li, et al., Energy Environ. Sci. 15 (2022) 3912–3922.
doi: 10.1039/d2ee00264g
R. Mondal, N.K. Mishra, M. Singh, A. Gupta, P. Singh, Phys. Chem. Chem. Phys. 24 (2022) 28584–28598.
doi: 10.1039/d2cp04708j
W. Wang, Z. Wang, Y. Hu, Y. Liu, S. Chen, eScience 2 (2022) 438–444.
doi: 10.1016/j.esci.2022.04.004
H.N. Nong, L.J. Falling, A. Bergmann, et al., Nature 587 (2020) 408–413.
doi: 10.1038/s41586-020-2908-2
A. Lončar, D.E. López, S. Cherevko, N. Hodnik, Angew. Chem. Int. Ed. 61 (2022) e202114437.
doi: 10.1002/anie.202114437
A. Zagalskaya, V. Alexandrov, ACS Catal. 10 (2020) 3650–3657.
doi: 10.1021/acscatal.9b05544
R. Zhang, P.E. Pearce, Y. Duan, et al., Chem. Mater. 31 (2019) 8248–8259.
doi: 10.1021/acs.chemmater.9b02318
S. Geiger, O. Kasian, M. Ledendecker, et al., Nat. Catal. 1 (2018) 508–515.
doi: 10.1038/s41929-018-0085-6
O. Kasian, J.P. Grote, S. Geiger, S. Cherevko, K.J.J. Mayrhofer, Angew. Chem. Int. Ed. 57 (2018) 2488–2491.
doi: 10.1002/anie.201709652
H. Over, ACS Catal 11 (2021) 8848–8871.
doi: 10.1021/acscatal.1c01973
S. Choi, J. Park, M.K. Kabiraz, et al., Adv. Funct. Mater. 30 (2020) 2003935.
doi: 10.1002/adfm.202003935
S. Cherevko, S. Geiger, O. Kasian, A. Mingers, K.J. Mayrhofer, J. Electroanal. Chem. 773 (2016) 69–78.
doi: 10.1016/j.jelechem.2016.04.033
S. Cherevko, A.R. Zeradjanin, A.A. Topalov, et al., ChemCatChem 6 (2014) 2219–2223.
doi: 10.1002/cctc.201402194
G.C. da Silva, S.I. Venturini, S. Zhang, et al., ChemElectroChem 7 (2020) 2330–2339.
doi: 10.1002/celc.202000391
M. Ledendecker, S. Geiger, K. Hengge, et al., Nano Res. 12 (2019) 2275–2280.
doi: 10.1007/s12274-019-2383-y
J. Knoppel, M. Mockl, D. Escalera-Lopez, et al., Nat. Commun. 12 (2021) 2231.
doi: 10.1038/s41467-021-22296-9
W. Huo, X. Zhou, Y. Jin, et al., Small 19 (2023) 2207847.
doi: 10.1002/smll.202207847
J. Gao, C.Q. Xu, S.F. Hung, et al., J. Am. Chem. Soc. 141 (2019) 3014–3023.
doi: 10.1021/jacs.8b11456
P. Jovanovič, N. Hodnik, F. Ruiz-Zepeda, et al., J. Am. Chem. Soc. 139 (2017) 12837–12846.
doi: 10.1021/jacs.7b08071
M. Scohy, S. Abbou, V. Martin, et al., ACS Catal. 9 (2019) 9859–9869.
doi: 10.1021/acscatal.9b02988
C. Guo, Y. Zheng, J. Ran, et al., Angew. Chem. Int. Ed. 56 (2017) 8539–8543.
doi: 10.1002/anie.201701531
J. Li, Y. Zhu, W. Chen, et al., Joule 3 (2019) 557–569.
doi: 10.1016/j.joule.2018.11.015
H.B. Tao, Y. Xu, X. Huang, et al., Joule 3 (2019) 1498–1509.
doi: 10.1016/j.joule.2019.03.012
S. Fleischmann, Y. Zhang, X. Wang, et al., Nat. Energy 7 (2022) 222–228.
doi: 10.1038/s41560-022-00993-z
P.E. Pearce, C. Yang, A. Iadecola, et al., Chem. Mater. 31 (2019) 5845–5855.
doi: 10.1021/acs.chemmater.9b01976
A.J. Perez, R. Beer, Z. Lin, et al., Adv. Energy Mater. 8 (2018) 1702855.
doi: 10.1002/aenm.201702855
Z. Wang, Y.R. Zheng, I. Chorkendorff, J.K. Nørskov, ACS Energy Lett. 5 (2020) 2905–2908.
doi: 10.1021/acsenergylett.0c01625
H.S. Oh, H.N. Nong, T. Reier, M. Gliech, P. Strasser, Chem. Sci. 6 (2015) 3321–3328.
doi: 10.1039/C5SC00518C
M. Bernt, A. Siebel, H.A. Gasteiger, J. Electrochem. Soc. 165 (2018) F305–F314.
doi: 10.1149/2.0641805jes
E. Willinger, C. Massué, R. Schlögl, M.G. Willinger, J. Am. Chem. Soc. 139 (2017) 12093–12101.
doi: 10.1021/jacs.7b07079
D. Cao, Z. Zhang, Y. Cui, et al., Angew. Chem. Int. Ed. 62 (2023) e202214259.
doi: 10.1002/anie.202214259
K. Jiang, M. Luo, M. Peng, et al., Nat. Commun. 11 (2020) 2701.
doi: 10.1038/s41467-020-16558-1
Y.T. Kim, P.P. Lopes, S.A. Park, et al., Nat. Commun. 8 (2017) 1449.
doi: 10.1038/s41467-017-01734-7
H. Yu, N. Danilovic, Y. Wang, et al., Appl. Catal. B: Environ. 239 (2018) 133–146.
doi: 10.1016/j.apcatb.2018.07.064
N. Danilovic, R. Subbaraman, K.C. Chang, et al., Angew. Chem. Int. Ed. 53 (2014) 14016–14021.
doi: 10.1002/anie.201406455
S. Li, C. Xi, Y.Z. Jin, et al., ACS Energy Lett. 4 (2019) 1823–1829.
doi: 10.1021/acsenergylett.9b01252
E.J. Kim, J. Shin, J. Bak, et al., Appl. Catal. B: Environ. 280 (2021) 119433.
doi: 10.1016/j.apcatb.2020.119433
C. Lee, K. Shin, Y. Park, et al., Adv. Funct. Mater. 33 (2023) 2301557.
doi: 10.1002/adfm.202301557
L. Gu, J. Qi, H. Zeng, et al., ACS Appl. Energy Mater. 6 (2023) 1439–1448.
doi: 10.1021/acsaem.2c03300
S. Ganguly, R. Datta, P. Basera, et al., ACS Sustain. Chem. Eng. 12 (2024) 849–859.
doi: 10.1021/acssuschemeng.3c05753
Y. Sun, R. Li, X. Chen, et al., Adv. Energy Mater. 11 (2021) 2003755.
doi: 10.1002/aenm.202003755
A. Zagalskaya, V. Alexandrov, J. Phys. Chem. Lett. 11 (2020) 2695–2700.
doi: 10.1021/acs.jpclett.0c00335
Q. Dang, H. Lin, Z. Fan, et al., Nat. Commun. 12 (2021) 6007.
doi: 10.1038/s41467-021-26336-2
N. Diklić, A.H. Clark, J. Herranz, et al., ACS Catal. 13 (2023) 11069–11079.
doi: 10.1021/acscatal.3c01448
Y. He, F. Yan, X. Zhang, et al., Adv. Energy Mater. 13 (2023) 2204177.
doi: 10.1002/aenm.202204177
M. Elmaalouf, M. Odziomek, S. Duran, et al., Nat. Commun. 12 (2021) 3935.
doi: 10.1038/s41467-021-24181-x
M. Li, M. Song, W. Ni, et al., Chin. Chem. Lett. 34 (2023) 107571.
doi: 10.1016/j.cclet.2022.05.085
L. Fu, X. Zeng, C. Huang, et al., Inorg. Chem. Front. 5 (2018) 1121–1125.
doi: 10.1039/c8qi00082d
E. Achilli, S. Minelli, I. Casale, et al., Electrochim. Acta 444 (2023) 142017.
doi: 10.1016/j.electacta.2023.142017
R.E. Warburton, P. Hutchison, M.N. Jackson, et al., J. Am. Chem. Soc. 142 (2020) 20855–20864.
doi: 10.1021/jacs.0c10632
Y. Wen, C. Liu, R. Huang, et al., Nat. Commun. 13 (2022) 4871.
doi: 10.1038/s41467-022-32581-w
W. Zhao, F. Xu, L. Liu, M. Liu, B. Weng, Adv. Mater. 35 (2023) 2308060.
doi: 10.1002/adma.202308060
M. Kim, J. Park, M. Wang, et al., Appl. Catal. B: Environ. 302 (2022) 120834.
doi: 10.1016/j.apcatb.2021.120834
Y. Zhu, J. Wang, T. Koketsu, et al., Nat. Commun. 13 (2022) 7754.
doi: 10.1038/s41467-022-35426-8
Z. Zhang, C. Feng, D. Wang, et al., Nat. Commun. 13 (2022) 2473.
doi: 10.1038/s41467-022-30148-3
L.Y. Chueh, C.H. Kuo, R.H. Yang, et al., Chem. Eng. J 464 (2023) 142613.
doi: 10.1016/j.cej.2023.142613
L. Li, P. Wang, Z. Cheng, Q. Shao, X. Huang, Nano Res. 15 (2021) 1087–1093.
F. Luo, L. Guo, Y. Xie, et al., Appl. Catal. B: Environ. 279 (2020) 119394.
doi: 10.1016/j.apcatb.2020.119394
L. Yang, K. Zhang, H. Chen, et al., J. Energy Chem. 66 (2022) 619–627.
doi: 10.1016/j.jechem.2021.09.016
D. Böhm, M. Beetz, M. Schuster, et al., Adv. Funct. Mater. 30 (2020) 1906670.
doi: 10.1002/adfm.201906670
L. Zhuang, F. Xu, K. Wang, et al., Small 17 (2021) 2100121.
doi: 10.1002/smll.202100121
J.A. Hoffman, Z.S.H.S. Rajan, D. Susac, M.C. Matoetoe, R. Mohamed, J. Phys. Chem. C 127 (2023) 894–906.
doi: 10.1021/acs.jpcc.2c06501
B. Huang, Y. Zhao, EcoMat 4 (2022) e12176.
doi: 10.1002/eom2.12176
F. Liao, K. Yin, Y. Ji, et al., Nat. Commun. 14 (2023) 1248.
doi: 10.1038/s41467-023-36833-1
B. Jiang, Y. Guo, J. Kim, et al., J. Am. Chem. Soc. 140 (2018) 12434–12441.
doi: 10.1021/jacs.8b05206
G. Jiang, H. Yu, J. Hao, et al., J. Energy Chem. 39 (2019) 23–28.
doi: 10.1016/j.jechem.2019.01.011
S. Zhang, L. Yin, Q. Li, et al., Chem. Sci. 14 (2023) 5887–5893.
doi: 10.1039/d3sc01052j
N. Zhang, J. Du, N. Zhou, et al., Chin. J. Catal. 53 (2023) 134–142.
doi: 10.1016/S1872-2067(23)64517-6
H. Wu, Y. Wang, Z. Shi, et al., J. Phys. Chem. C 127 (2023) 12541–12547.
doi: 10.1021/acs.jpcc.3c02818
J. Shan, C. Ye, S. Chen, et al., J. Am. Chem. Soc 143 (2021) 5201–5211.
doi: 10.1021/jacs.1c01525
S. Kumari, B.P. Ajayi, B. Kumar, et al., Energ. Environ. Sci. 10 (2017) 2432–2440.
doi: 10.1039/C7EE02626A
W. Sun, Y. Song, X.Q. Gong, L. m. Cao, J. Yang, Chem. Sci. 6 (2015) 4993–4999.
doi: 10.1039/C5SC01251A
Y. Wang, R. Ma, Z. Shi, et al., Chem 9 (2023) 2931–2942.
doi: 10.1016/j.chempr.2023.05.044
W. Zhu, X. Song, F. Liao, et al., Nat. Commun. 14 (2023) 5365.
doi: 10.1038/s41467-023-41036-9
F.F. Zhang, C.Q. Cheng, J.Q. Wang, et al., ACS Energy Lett. 6 (2021) 1588–1595.
doi: 10.1021/acsenergylett.1c00283
S. Hao, H. Sheng, M. Liu, et al., Nat. Nanotechnol. 16 (2021) 1371–1377.
doi: 10.1038/s41565-021-00986-1
L. Jin, H. Pang, Chin. Chem. Lett. 31 (2020) 2300–2304.
doi: 10.1016/j.cclet.2020.03.041
P. Han, T. Tan, F. Wu, et al., Chin. Chem. Lett. 31 (2020) 2469–2472.
doi: 10.1016/j.cclet.2020.03.009
C. Yang, X. Zhang, Q. An, et al., J. Energy Chem. 78 (2023) 374–380.
doi: 10.1016/j.jechem.2022.12.032
X. Zheng, J. Yang, P. Li, et al., Sci. Adv. 9 (2023) eadi8025.
doi: 10.1126/sciadv.adi8025
H. Su, W. Zhou, W. Zhou, et al., Nat. Commun. 12 (2021) 6118.
doi: 10.1038/s41467-021-26416-3
Z. Shi, J. Li, J. Jiang, et al., Angew. Chem. Int. Ed. 61 (2022) e202212341.
doi: 10.1002/anie.202212341
X. Liu, S. Xi, H. Kim, et al., Nat. Commun. 12 (2021) 5676.
doi: 10.1038/s41467-021-26025-0
H.J. Song, H. Yoon, B. Ju, D.W. Kim, Adv. Energy Mater. 11 (2020) 2002428.
H. Wang, J. Wang, Y. Pi, et al., Angew. Chem. Int. Ed. 131 (2019) 2338–2342.
doi: 10.1002/ange.201812545
D.F. Abbott, R.K. Pittkowski, K. Macounova, et al., ACS Appl. Mater. 11 (2019) 37748–37760.
doi: 10.1021/acsami.9b13220
M. Retuerto, L. Pascual, J. Torrero, et al., Nat. Commun. 13 (2022) 7935.
doi: 10.1038/s41467-022-35631-5
Q. Zhang, X. Liang, H. Chen, et al., Chem. Mater. 32 (2020) 3904–3910.
doi: 10.1021/acs.chemmater.0c00081
C. Shang, C. Cao, D. Yu, et al., Adv. Mater. 31 (2018) 1805104.
J. Torrero, T. Morawietz, D. García Sanchez, et al., Adv. Energy Mater. 13 (2023) 2204169.
doi: 10.1002/aenm.202204169
M. Bernt, C. Schramm, J. Schröter, et al., J. Electrochem. Soc. 168 (2021) 084513.
doi: 10.1149/1945-7111/ac1eb4
M. Bernt, J. Schröter, M. Möckl, H.A. Gasteiger, J. Electrochem. Soc. 167 (2020) 124502.
doi: 10.1149/1945-7111/abaa68
C. Simon, J. Endres, B.N. Loders, F. Wilhelm, H.A. Gasteiger, J. Electrochem. Soc. 166 (2019) F1022–F1035.
doi: 10.1149/2.1111913jes
M. Bernt, H.A. Gasteiger, J. Electrochem. Soc. 163 (2016) F3179–F3189.
doi: 10.1149/2.0231611jes
T.B.N. Huynh, J. Song, H.E. Bae, et al., Adv. Funct. Mater. 33 (2023) 2301999.
doi: 10.1002/adfm.202301999
J. Lim, G. Kang, J.W. Lee, et al., J. Power Sources 524 (2022) 231069.
doi: 10.1016/j.jpowsour.2022.231069
M. Möckl, M.F. Ernst, M. Kornherr, et al., J. Electrochem. Soc. 169 (2022) 064505.
doi: 10.1149/1945-7111/ac6d14
S. Dong, C. Zhang, Z. Yue, et al., Nano Lett. 22 (2022) 9434–9440.
doi: 10.1021/acs.nanolett.2c03461
B. Tian, Y. Li, Y. Liu, et al., Nano Lett. 23 (2023) 6474–6481.
doi: 10.1021/acs.nanolett.3c01331
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Chupeng Luo , Keying Su , Shan Yang , Yujia Liang , Yawen Tang , Xiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Bin Zhao , Heping Luo , Jiaqing Liu , Sha Chen , Han Xu , Yu Liao , Xue Feng Lu , Yan Qing , Yiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887