Citation: Yanwei Duan, Qing Yang. Molecular targets and their application examples for interrupting chitin biosynthesis[J]. Chinese Chemical Letters, ;2025, 36(4): 109905. doi: 10.1016/j.cclet.2024.109905 shu

Molecular targets and their application examples for interrupting chitin biosynthesis

    * Corresponding author.
    E-mail address: qingyang@caas.cn (Q. Yang).
  • Received Date: 20 January 2024
    Revised Date: 12 April 2024
    Accepted Date: 16 April 2024
    Available Online: 23 April 2024

Figures(5)

  • Chitin is an abundant aminopolysaccharide found in insect pests and phytopathogenic microorganisms but absent in higher plants and vertebrates. It is crucial for mitigating threats posed by chitin-containing organisms to human health, food safety, and agriculture. Therefore, targeting the chitin biosynthesis-associated bioprocess holds a promise for developing human-safe and eco-friendly antifungal agents or pesticides. Chitin biosynthesis requires chitin synthase and associated factors, which are involved in the modification, regulation, organization or turnover of chitin during its biosynthesis. A number of enzymes such as chitinases, hexosaminidases, chitin deacetylases are closely related and therefore are promising targets for designing novel agrochemicals that target at chitin biosynthesis. This review summarizes the advances in understanding chitin biology over the past decade by our research group and collaborates, specifically regarding essential proteins linked to chitin biosynthesis that can be exploited as promising pesticide targets. Examples of small bioactive molecules that against the activity of these targets are given.
  • 加载中
    1. [1]

      W. Cheng, M. Lin, M. Qiu, et al., Environ. Microbiol. 21 (2019) 4537–4547.  doi: 10.1111/1462-2920.14744

    2. [2]

      B. Moussian, Chitin: structure, chemistry and biology, in: Q. Yang, T. Fukamizo (Eds. ), Targeting Chitin-containing Organisms, Springer, Singapore, 2019, pp. 5–18.

    3. [3]

      A. Schwelm, J. Fogelqvist, A. Knaust, et al., Sci. Rep. 5 (2015) 11153.

    4. [4]

      E. Cohen, Chitin biochemistry: synthesis, hydrolysis and inhibition, in: J. Casas, S. Simpson (Eds. ), Advances in Insect Physiology, Academic Press, San Diego, 2010, pp. 5–74.

    5. [5]

      H. Merzendorfer, J. Comp. Physiol. B 176 (2006) 1–15.  doi: 10.1007/s00360-005-0005-3

    6. [6]

      K. Zhu, H. Merzendorfer, W. Zhang, J. Zhang, S. Muthukrishnan, Annu. Rev. Entomol. 61 (2016) 177–196.  doi: 10.1146/annurev-ento-010715-023933

    7. [7]

      Y. Li, L. Liu, J. Yang, Q. Yang, J. Pestic. Sci. 46 (2021) 43–52.

    8. [8]

      G. Courtade, F.L. Aachmann, Chitin-active lytic polysaccharide monooxygenases, in: Q. Yang, T. Fukamizo (Eds. ), Targeting Chitin-containing Organisms, Springer, Singapore, 2019, pp. 115–129.

    9. [9]

      B. Moussian, Insect Biochem. Mol. Biol. 40 (2010) 363–375.

    10. [10]

      H. Merzendorfer, Eur. J. Cell. Biol. 90 (2011) 759–769.

    11. [11]

      M. Qu, Q. Yang, Insect Biochem. Mol. Biol. 41 (2011) 923–931.

    12. [12]

      M. Qu, T. Liu, J. Yang, Q. Yang, Biochem. Biophys. Res. Commun. 404 (2011) 302–307.

    13. [13]

      M. Qu, Q. Yang, Insect. Mol. Biol. 21 (2012) 395–404.  doi: 10.1111/j.1365-2583.2012.01145.x

    14. [14]

      W. Chen, P. Cao, Y. Liu, et al., Nature 610 (2022) 402–408.  doi: 10.1038/s41586-022-05244-5

    15. [15]

      Y. Duan, W. Zhu, X. Zhao, et al., Insect Biochem. Mol. Biol. 141 (2022) 103718.

    16. [16]

      W. Zhu, Y. Duan, J. Chen, et al., Insect Biochem. Mol. Biol. 145 (2022) 103783.

    17. [17]

      J. Chen, X. Zou, W. Zhu, et al., Insect Biochem. Mol. Biol. 149 (2022) 103845.

    18. [18]

      S. Ke, X. Qian, F. Liu, et al., Eur. J. Med. Chem. 44 (2009) 2113–2121.

    19. [19]

      S. Ke, F. Liu, N. Wang, Q. Yang, X. Qian, Bioorg. Med. Chem. Lett. 19 (2009) 332–335.

    20. [20]

      S. Ke, X. Qian, F. Liu, et al., Eur. J. Med. Chem. 44 (2009) 2985–2993.

    21. [21]

      Q. Chen, J. Zhang, L. Chen, et al., Chin. Chem. Lett. 28 (2017) 1232–1237.

    22. [22]

      X. Zhang, Z. Yang, H. Xu, et al., J. Agric. Food Chem. 70 (2022) 9262–9275.

    23. [23]

      Q. Lu, H. Cui, W. Li, et al., J. Agric. Food Chem. 70 (2022) 10762–10770.  doi: 10.1021/acs.jafc.2c04195

    24. [24]

      L. Liu, Y. Zhou, M. Qu, et al., J. Biol. Chem. 294 (2019) 5774–5783.  doi: 10.1074/jbc.ra119.007597

    25. [25]

      L. Liu, M. Qu, T. Liu, et al., J. Insect. Physiol. 113 (2019) 42–48.  doi: 10.3390/joitmc5030042

    26. [26]

      L. Liu, Y. Xia, Y. Li, et al., Nat. Commun. 14 (2023) 3857.

    27. [27]

      X. Zhao, Z. Qin, J. Zhang, et al., Insect Mol. Biol. 28 (2019) 537–549.  doi: 10.1111/imb.12569

    28. [28]

      J. Zhang, G. Xu, B. Qiu, et al., Insect Biochem. Mol. Biol. 116 (2020) 103264.

    29. [29]

      M. Qu, Y. Ren, Y. Liu, Q. Yang, Insect Mol. Biol. 26 (2017) 432–439.  doi: 10.1111/imb.12308

    30. [30]

      H. Qi, T. Liu, Q. Lu, Q. Yang, J. Agric. Food Chem. 68 (2020) 982–988.  doi: 10.1021/acs.jafc.9b06959

    31. [31]

      Q. Gong, L. Chen, J. Wang, et al., Biomacromolecules 23 (2022) 2562–2571.  doi: 10.1021/acs.biomac.2c00261

    32. [32]

      M. Qu, L. Ma, P. Chen, Q. Yang, J. Proteome Res. 13 (2014) 2931–2940.  doi: 10.1021/pr5000957

    33. [33]

      M. Qu, T. Watanabe-Nakayama, S. Sun, et al., ACS Catal. 10 (2020) 13606–13615.  doi: 10.1021/acscatal.0c02751

    34. [34]

      Q. Yang, T. Liu, F. Liu, M. Qu, X. Qian, FEBS J 275 (2008) 5690–5702.  doi: 10.1111/j.1742-4658.2008.06695.x

    35. [35]

      T. Liu, F. Liu, Q. Yang, J. Yang, Protein Expr. Purif. 68 (2009) 99–103.

    36. [36]

      T. Liu, H. Zhang, F. Liu, et al., J. Biol. Chem. 286 (2011) 4049–4058.  doi: 10.1074/jbc.M110.184796

    37. [37]

      T. Liu, H. Zhang, F. Liu, et al., Biochem. J. 438 (2011) 467–474.

    38. [38]

      Y. Wang, T. Liu, Q. Yang, Z. Li, X. Qian, Chem. Biol. Drug Des. 79 (2012) 572–582.  doi: 10.1111/j.1747-0285.2011.01301.x

    39. [39]

      T. Liu, Y. Zhou, L. Chen, et al., PLoS One 7 (2012) e52225.  doi: 10.1371/journal.pone.0052225

    40. [40]

      T. Liu, Q. Wu, L. Liu, Q. Yang, Process. Biochem. 48 (2013) 103–108.

    41. [41]

      T. Liu, M. Qu, Q. Yang, J. Yang, X. Qian, J. Biotechnol. 136 (2008) S109.

    42. [42]

      F. Liu, T. Liu, M. Qu, Q. Yang, Int. J. Biol. Sci. 8 (2012) 1085–1096.  doi: 10.7150/ijbs.4406

    43. [43]

      M. Qu, T. Liu, P. Chen, Q. Yang, PLoS One 8 (2013) e71738.  doi: 10.1371/journal.pone.0071738

    44. [44]

      Y. Huo, L. Chen, M. Qu, Q. Chen, Q. Yang, Arch. Insect Biochem. Physiol. 83 (2013) 115–126.  doi: 10.1002/arch.21099

    45. [45]

      Q. Wu, T. Liu, Q. Yang, Insect Sci. 20 (2013) 147–157.  doi: 10.1111/j.1744-7917.2012.01512.x

    46. [46]

      L. Chen, T. Liu, Y. Zhou, et al., Acta Crystallogr. D: Biol. Crystallogr. 70 (2014) 932–942.

    47. [47]

      T. Liu, L. Chen, Y. Zhou, et al., J. Biol. Chem. 292 (2017) 2080–2088.

    48. [48]

      W. Chen, M. Qu, Y. Zhou, Q. Yang, J. Biol. Chem. 293 (2018) 2652–2660.  doi: 10.1074/jbc.ra117.000119

    49. [49]

      M. Qu, S. Sun, Y. Liu, et al., Insect Sci. 28 (2021) 692–704.  doi: 10.1111/1744-7917.12791

    50. [50]

      T. Liu, W. Zhu, J. Wang, et al., Acta Crystallogr. D: Struct. Biol. 74 (2018) 30–40.

    51. [51]

      T. Liu, X. Guo, Y. Bu, et al., Insect Biochem. Mol. Biol. 119 (2020) 103326.

    52. [52]

      Q. Chen, W. Chen, A. Kumar, et al., J. Agric. Food Chem. 69 (2021) 3519–3526.  doi: 10.1021/acs.jafc.1c00162

    53. [53]

      M. Qu, X. Guo, S. Tian, et al., Commun. Biol. 5 (2022) 518.

    54. [54]

      M. Qu, X. Guo, L. Kong, L. Hou, Q. Yang, Insect Sci. 29 (2022) 1287–1298.  doi: 10.1111/1744-7917.13016

    55. [55]

      Y. Yang, T. Liu, Y. Yang, et al., ChemBioChem 12 (2011) 457–467.  doi: 10.1002/cbic.201000561

    56. [56]

      T. Liu, P. Guo, Y. Zhou, et al., Sci. Rep. 4 (2014) 6188.

    57. [57]

      T. Liu, M. Xia, H. Zhang, et al., FEBS Lett. 589 (2015) 110–116.  doi: 10.1016/j.febslet.2014.11.032

    58. [58]

      L. Chen, T. Liu, Y. Duan, X. Lu, Q. Yang, J. Agric. Food Chem. 65 (2017) 3851–3857.  doi: 10.1021/acs.jafc.7b01710

    59. [59]

      Y. Duan, T. Liu, Y. Zhou, T. Dou, Q. Yang, J. Biol. Chem. 293 (2018) 15429–15438.  doi: 10.1074/jbc.ra118.004351

    60. [60]

      H. Yang, T. Liu, H. Qi, et al., Bioorg. Med. Chem. 26 (2018) 5420–5426.

    61. [61]

      H. Yang, H. Qi, T. Liu, et al., Chin. Chem. Lett. 30 (2019) 977–980.

    62. [62]

      H. Yang, H. Qi, Z. Hao, et al., Chin. Chem. Lett. 31 (2020) 1271–1275.

    63. [63]

      S. Shen, L. Dong, W. Chen, et al., J. Agric. Food Chem. 67 (2019) 6387–6396.  doi: 10.1021/acs.jafc.9b02281

    64. [64]

      L. Dong, S. Shen, W. Chen, et al., Bioorg. Med. Chem. 27 (2019) 2315–2322.

    65. [65]

      P. Liang, Q. Xu, R. Chen, et al., Carbohydr. Res. 520 (2022) 108629.

    66. [66]

      Y. Dong, S. Hu, X. Zhao, et al., Pest Manag. Sci. 76 (2020) 3030–3037.  doi: 10.1002/ps.5852

    67. [67]

      L. Dong, S. Shen, Y. Xu, et al., J. Biomol. Struct. Dyn. 39 (2021) 1735–1743.  doi: 10.1080/07391102.2020.1743758

    68. [68]

      T. Chen, W. Li, Z. Liu, et al., J. Agric. Food Chem. 69 (2021) 12039–12047.  doi: 10.1021/acs.jafc.1c01642

    69. [69]

      P. Guo, Q. Chen, T. Liu, et al., ACS Med. Chem. Lett. 4 (2013) 527–531.  doi: 10.1021/ml300475m

    70. [70]

      Q. Chen, P. Guo, L. Xu, et al., Biochimie 97 (2014) 152–162.

    71. [71]

      H. Kong, W. Chen, H. Lu, et al., Carbohydr. Res. 413 (2015) 135–144.

    72. [72]

      H. Kong, W. Chen, T. Liu, et al., Carbohydr. Res. 429 (2016) 54–61.

    73. [73]

      W. Chen, S. Shen, L. Dong, J. Zhang, Q. Yang, Bioorg. Med. Chem. 26 (2018) 394–400.

    74. [74]

      S. Shen, W. Chen, L. Dong, et al., J. Enzyme Inhib. Med. Chem. 33 (2018) 445–452.  doi: 10.1080/14756366.2017.1419217

    75. [75]

      L. Chen, Y. Zhou, M. Qu, Y. Zhao, Q. Yang, J. Biol. Chem. 289 (2014) 17932–17940.

    76. [76]

      X. Jiang, A. Kumar, T. Liu, K. Zhang, Q. Yang, J. Chem. Inf. Model. 56 (2016) 2413–2420.  doi: 10.1021/acs.jcim.6b00615

    77. [77]

      Y. Dong, X. Jiang, T. Liu, et al., J. Agric. Food Chem. 66 (2018) 3351–3357.  doi: 10.1021/acs.jafc.8b00017

    78. [78]

      Y. Dong, S. Hu, X. Jiang, et al., J. Agric. Food Chem. 67 (2019) 3575–3582.  doi: 10.1021/acs.jafc.9b00837

    79. [79]

      B. Jiang, X. Jin, Y. Dong, et al., J. Agric. Food Chem. 68 (2020) 6347–6354.  doi: 10.1021/acs.jafc.0c00522

    80. [80]

      B. Jiang, B. Guo, J. Cui, et al., Bioorg. Med. Chem. Lett. 30 (2020) 127500.

    81. [81]

      Q. Han, N. Wu, H. Li, et al., J. Agric. Food Chem. 69 (2021) 7534–7544.  doi: 10.1021/acs.jafc.0c08119

    82. [82]

      Q. Han, N. Wu, J. Zhang, et al., J. Agric. Food Chem. 71 (2023) 18685–18695.  doi: 10.1021/acs.jafc.3c05287

    83. [83]

      W. Chen, Y. Zhou, Q. Yang, J. Biol. Chem. 294 (2019) 9358–9364.  doi: 10.1074/jbc.ra119.007812

    84. [84]

      X. Jiang, A. Kumar, Y. Motomura, et al., J. Med. Chem. 63 (2020) 987–1001.  doi: 10.1021/acs.jmedchem.9b01154

    85. [85]

      L. Dong, S. Shen, X. Jiang, et al., J. Agric. Food Chem. 70 (2022) 12203–12210.  doi: 10.1021/acs.jafc.2c03997

    86. [86]

      P. Yuan, X. Jiang, S. Wang, et al., J. Agric. Food Chem. 68 (2020) 13584–13593.  doi: 10.1021/acs.jafc.0c03742

    87. [87]

      L. Zhu, L. Chen, X. Shao, et al., J. Agric. Food Chem. 69 (2021) 7526–7533.  doi: 10.1021/acs.jafc.0c07401

    88. [88]

      Q. Lu, L. Xu, L. Liu, et al., J. Agric. Food Chem. 69 (2021) 14086–14091.  doi: 10.1021/acs.jafc.1c05385

    89. [89]

      Z. Zhao, Q. Xu, W. Chen, et al., J. Agric. Food Chem. 70 (2022) 4889–4898.  doi: 10.1021/acs.jafc.2c00016

    90. [90]

      H. Qi, X. Jiang, Y. Ding, T. Liu, Q. Yang, Front Mol. Biosci. 8 (2021) 640356.

    91. [91]

      W. Li, Y. Ding, H. Qi, T. Liu, Q. Yang, J. Agric. Food Chem. 69 (2021) 10830–10837.  doi: 10.1021/acs.jafc.1c03629

    92. [92]

      Y. Ding, S. Chen, F. Zhang, et al., J. Agric. Food Chem. 71 (2023) 1845–1851.  doi: 10.1021/acs.jafc.2c06607

    93. [93]

      Y. Ding, S. Chen, H. Liu, T. Liu, Q. Yang, J. Agric. Food Chem. 71 (2023) 8769–8777.  doi: 10.1021/acs.jafc.3c00633

    94. [94]

      Z. Jiang, D. Shi, H. Li, et al., J. Agric. Food Chem. 70 (2022) 10326–10336.  doi: 10.1021/acs.jafc.2c03751

    95. [95]

      Q. Han, N. Wu, Y. Liu, et al., J. Agric. Food Chem. 70 (2022) 7387–7399.  doi: 10.1021/acs.jafc.2c02091

    96. [96]

      X. Jin, T. Sun, B. Guo, et al., J. Agric. Food Chem. 71 (2023) 8345–8355.  doi: 10.1021/acs.jafc.3c00775

    97. [97]

      Z. Zhao, W. Chen, Y. Dong, et al., J. Agric. Food Chem. 71 (2023) 12431–12439.  doi: 10.1021/acs.jafc.3c02448

    98. [98]

      L. Chen, L. Zhu, J. Chen, et al., J. Enzyme Inhib. Med. Chem. 35 (2020) 1937–1943.  doi: 10.1080/14756366.2020.1837123

    99. [99]

      W. Chen, Q. Chen, A. Kumar, et al., J. Enzyme Inhib. Med. Chem. 36 (2021) 1198–1204.  doi: 10.1080/14756366.2021.1931862

    100. [100]

      S. Shen, B. Ding, X. Jiang, et al., Front Chem. 10 (2022) 1021295.

    101. [101]

      X. Jin, T. Sun, X. Zhang, et al., J. Agric. Food Chem. 71 (2023) 244–254.  doi: 10.1021/acs.jafc.2c06516

    102. [102]

      E. Cohen, Pest Manag. Sci. 57 (2001) 946–950.

    103. [103]

      F. Matsumura, Pestic. Biochem. Phys. 97 (2010) 133–139.

    104. [104]

      H. Merzendorfer, Insect Sci. 20 (2013) 121–138.  doi: 10.1111/j.1744-7917.2012.01535.x

    105. [105]

      H. Merzendorfer, L. Zimoch, J. Exp. Biol. 206 (2003) 4393–4412.

    106. [106]

      S. Muthukrishnan, H. Merzendorfer, Y. Arakane, K.J. Kramer, Chitin metabolism in insects, in: L. Gilbert (Ed. ), Insect Molecular Biology and Biochemistry, Academic Press, San Diego, 2012, pp. 193–235.

    107. [107]

      S. Muthukrishnan, H. Merzendorfer, Y. Arakane, Q. Yang, Chitin metabolic pathways in insects and their regulation, in: E. Cohen, B. Moussian (Eds. ), Extracellular Composite Matrices in Arthropods, Springer, Cham, 2016, pp. 31–65.

    108. [108]

      Q. Yang, T. Fukamizo, Targeting Chitin-containing Organisms, 1st. ed, Springer, Singapore, 2019.

    109. [109]

      W. Chen, X. Jiang, Q. Yang, Biotechnol. Adv. 43 (2020) 107553.

    110. [110]

      A. Yu, M. Beck, H. Merzendorfer, Q. Yang, Insect Biochem. Mol. Biol. 164 (2023) 104058.

    111. [111]

      T. Liu, Y. Duan, Q. Yang, Biotechnol. Adv. 36 (2018) 1127–1138.

    112. [112]

      W. Chen, Q. Yang, J. Agric. Food Chem. 68 (2020) 4559–4565.  doi: 10.1021/acs.jafc.0c00888

    113. [113]

      Y. Ding, Q. Lu, T. Liu, Q. Yang, Adv. Agrochem. 2 (2023) 306–312.

    114. [114]

      Q. Lu, H. Xie, M. Qu, T. Liu, Q. Yang, J. Agric. Food Chem. 71 (2023) 5944–5952.

  • 加载中
    1. [1]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    2. [2]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    3. [3]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

Metrics
  • PDF Downloads(1)
  • Abstract views(71)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return