Molecular targets and their application examples for interrupting chitin biosynthesis
-
* Corresponding author.
E-mail address: qingyang@caas.cn (Q. Yang).
Citation:
Yanwei Duan, Qing Yang. Molecular targets and their application examples for interrupting chitin biosynthesis[J]. Chinese Chemical Letters,
;2025, 36(4): 109905.
doi:
10.1016/j.cclet.2024.109905
W. Cheng, M. Lin, M. Qiu, et al., Environ. Microbiol. 21 (2019) 4537–4547.
doi: 10.1111/1462-2920.14744
B. Moussian, Chitin: structure, chemistry and biology, in: Q. Yang, T. Fukamizo (Eds. ), Targeting Chitin-containing Organisms, Springer, Singapore, 2019, pp. 5–18.
A. Schwelm, J. Fogelqvist, A. Knaust, et al., Sci. Rep. 5 (2015) 11153.
E. Cohen, Chitin biochemistry: synthesis, hydrolysis and inhibition, in: J. Casas, S. Simpson (Eds. ), Advances in Insect Physiology, Academic Press, San Diego, 2010, pp. 5–74.
H. Merzendorfer, J. Comp. Physiol. B 176 (2006) 1–15.
doi: 10.1007/s00360-005-0005-3
K. Zhu, H. Merzendorfer, W. Zhang, J. Zhang, S. Muthukrishnan, Annu. Rev. Entomol. 61 (2016) 177–196.
doi: 10.1146/annurev-ento-010715-023933
Y. Li, L. Liu, J. Yang, Q. Yang, J. Pestic. Sci. 46 (2021) 43–52.
G. Courtade, F.L. Aachmann, Chitin-active lytic polysaccharide monooxygenases, in: Q. Yang, T. Fukamizo (Eds. ), Targeting Chitin-containing Organisms, Springer, Singapore, 2019, pp. 115–129.
B. Moussian, Insect Biochem. Mol. Biol. 40 (2010) 363–375.
H. Merzendorfer, Eur. J. Cell. Biol. 90 (2011) 759–769.
M. Qu, Q. Yang, Insect Biochem. Mol. Biol. 41 (2011) 923–931.
M. Qu, T. Liu, J. Yang, Q. Yang, Biochem. Biophys. Res. Commun. 404 (2011) 302–307.
M. Qu, Q. Yang, Insect. Mol. Biol. 21 (2012) 395–404.
doi: 10.1111/j.1365-2583.2012.01145.x
W. Chen, P. Cao, Y. Liu, et al., Nature 610 (2022) 402–408.
doi: 10.1038/s41586-022-05244-5
Y. Duan, W. Zhu, X. Zhao, et al., Insect Biochem. Mol. Biol. 141 (2022) 103718.
W. Zhu, Y. Duan, J. Chen, et al., Insect Biochem. Mol. Biol. 145 (2022) 103783.
J. Chen, X. Zou, W. Zhu, et al., Insect Biochem. Mol. Biol. 149 (2022) 103845.
S. Ke, X. Qian, F. Liu, et al., Eur. J. Med. Chem. 44 (2009) 2113–2121.
S. Ke, F. Liu, N. Wang, Q. Yang, X. Qian, Bioorg. Med. Chem. Lett. 19 (2009) 332–335.
S. Ke, X. Qian, F. Liu, et al., Eur. J. Med. Chem. 44 (2009) 2985–2993.
Q. Chen, J. Zhang, L. Chen, et al., Chin. Chem. Lett. 28 (2017) 1232–1237.
X. Zhang, Z. Yang, H. Xu, et al., J. Agric. Food Chem. 70 (2022) 9262–9275.
Q. Lu, H. Cui, W. Li, et al., J. Agric. Food Chem. 70 (2022) 10762–10770.
doi: 10.1021/acs.jafc.2c04195
L. Liu, Y. Zhou, M. Qu, et al., J. Biol. Chem. 294 (2019) 5774–5783.
doi: 10.1074/jbc.ra119.007597
L. Liu, M. Qu, T. Liu, et al., J. Insect. Physiol. 113 (2019) 42–48.
doi: 10.3390/joitmc5030042
L. Liu, Y. Xia, Y. Li, et al., Nat. Commun. 14 (2023) 3857.
X. Zhao, Z. Qin, J. Zhang, et al., Insect Mol. Biol. 28 (2019) 537–549.
doi: 10.1111/imb.12569
J. Zhang, G. Xu, B. Qiu, et al., Insect Biochem. Mol. Biol. 116 (2020) 103264.
M. Qu, Y. Ren, Y. Liu, Q. Yang, Insect Mol. Biol. 26 (2017) 432–439.
doi: 10.1111/imb.12308
H. Qi, T. Liu, Q. Lu, Q. Yang, J. Agric. Food Chem. 68 (2020) 982–988.
doi: 10.1021/acs.jafc.9b06959
Q. Gong, L. Chen, J. Wang, et al., Biomacromolecules 23 (2022) 2562–2571.
doi: 10.1021/acs.biomac.2c00261
M. Qu, L. Ma, P. Chen, Q. Yang, J. Proteome Res. 13 (2014) 2931–2940.
doi: 10.1021/pr5000957
M. Qu, T. Watanabe-Nakayama, S. Sun, et al., ACS Catal. 10 (2020) 13606–13615.
doi: 10.1021/acscatal.0c02751
Q. Yang, T. Liu, F. Liu, M. Qu, X. Qian, FEBS J 275 (2008) 5690–5702.
doi: 10.1111/j.1742-4658.2008.06695.x
T. Liu, F. Liu, Q. Yang, J. Yang, Protein Expr. Purif. 68 (2009) 99–103.
T. Liu, H. Zhang, F. Liu, et al., J. Biol. Chem. 286 (2011) 4049–4058.
doi: 10.1074/jbc.M110.184796
T. Liu, H. Zhang, F. Liu, et al., Biochem. J. 438 (2011) 467–474.
Y. Wang, T. Liu, Q. Yang, Z. Li, X. Qian, Chem. Biol. Drug Des. 79 (2012) 572–582.
doi: 10.1111/j.1747-0285.2011.01301.x
T. Liu, Y. Zhou, L. Chen, et al., PLoS One 7 (2012) e52225.
doi: 10.1371/journal.pone.0052225
T. Liu, Q. Wu, L. Liu, Q. Yang, Process. Biochem. 48 (2013) 103–108.
T. Liu, M. Qu, Q. Yang, J. Yang, X. Qian, J. Biotechnol. 136 (2008) S109.
F. Liu, T. Liu, M. Qu, Q. Yang, Int. J. Biol. Sci. 8 (2012) 1085–1096.
doi: 10.7150/ijbs.4406
M. Qu, T. Liu, P. Chen, Q. Yang, PLoS One 8 (2013) e71738.
doi: 10.1371/journal.pone.0071738
Y. Huo, L. Chen, M. Qu, Q. Chen, Q. Yang, Arch. Insect Biochem. Physiol. 83 (2013) 115–126.
doi: 10.1002/arch.21099
Q. Wu, T. Liu, Q. Yang, Insect Sci. 20 (2013) 147–157.
doi: 10.1111/j.1744-7917.2012.01512.x
L. Chen, T. Liu, Y. Zhou, et al., Acta Crystallogr. D: Biol. Crystallogr. 70 (2014) 932–942.
T. Liu, L. Chen, Y. Zhou, et al., J. Biol. Chem. 292 (2017) 2080–2088.
W. Chen, M. Qu, Y. Zhou, Q. Yang, J. Biol. Chem. 293 (2018) 2652–2660.
doi: 10.1074/jbc.ra117.000119
M. Qu, S. Sun, Y. Liu, et al., Insect Sci. 28 (2021) 692–704.
doi: 10.1111/1744-7917.12791
T. Liu, W. Zhu, J. Wang, et al., Acta Crystallogr. D: Struct. Biol. 74 (2018) 30–40.
T. Liu, X. Guo, Y. Bu, et al., Insect Biochem. Mol. Biol. 119 (2020) 103326.
Q. Chen, W. Chen, A. Kumar, et al., J. Agric. Food Chem. 69 (2021) 3519–3526.
doi: 10.1021/acs.jafc.1c00162
M. Qu, X. Guo, S. Tian, et al., Commun. Biol. 5 (2022) 518.
M. Qu, X. Guo, L. Kong, L. Hou, Q. Yang, Insect Sci. 29 (2022) 1287–1298.
doi: 10.1111/1744-7917.13016
Y. Yang, T. Liu, Y. Yang, et al., ChemBioChem 12 (2011) 457–467.
doi: 10.1002/cbic.201000561
T. Liu, P. Guo, Y. Zhou, et al., Sci. Rep. 4 (2014) 6188.
T. Liu, M. Xia, H. Zhang, et al., FEBS Lett. 589 (2015) 110–116.
doi: 10.1016/j.febslet.2014.11.032
L. Chen, T. Liu, Y. Duan, X. Lu, Q. Yang, J. Agric. Food Chem. 65 (2017) 3851–3857.
doi: 10.1021/acs.jafc.7b01710
Y. Duan, T. Liu, Y. Zhou, T. Dou, Q. Yang, J. Biol. Chem. 293 (2018) 15429–15438.
doi: 10.1074/jbc.ra118.004351
H. Yang, T. Liu, H. Qi, et al., Bioorg. Med. Chem. 26 (2018) 5420–5426.
H. Yang, H. Qi, T. Liu, et al., Chin. Chem. Lett. 30 (2019) 977–980.
H. Yang, H. Qi, Z. Hao, et al., Chin. Chem. Lett. 31 (2020) 1271–1275.
S. Shen, L. Dong, W. Chen, et al., J. Agric. Food Chem. 67 (2019) 6387–6396.
doi: 10.1021/acs.jafc.9b02281
L. Dong, S. Shen, W. Chen, et al., Bioorg. Med. Chem. 27 (2019) 2315–2322.
P. Liang, Q. Xu, R. Chen, et al., Carbohydr. Res. 520 (2022) 108629.
Y. Dong, S. Hu, X. Zhao, et al., Pest Manag. Sci. 76 (2020) 3030–3037.
doi: 10.1002/ps.5852
L. Dong, S. Shen, Y. Xu, et al., J. Biomol. Struct. Dyn. 39 (2021) 1735–1743.
doi: 10.1080/07391102.2020.1743758
T. Chen, W. Li, Z. Liu, et al., J. Agric. Food Chem. 69 (2021) 12039–12047.
doi: 10.1021/acs.jafc.1c01642
P. Guo, Q. Chen, T. Liu, et al., ACS Med. Chem. Lett. 4 (2013) 527–531.
doi: 10.1021/ml300475m
Q. Chen, P. Guo, L. Xu, et al., Biochimie 97 (2014) 152–162.
H. Kong, W. Chen, H. Lu, et al., Carbohydr. Res. 413 (2015) 135–144.
H. Kong, W. Chen, T. Liu, et al., Carbohydr. Res. 429 (2016) 54–61.
W. Chen, S. Shen, L. Dong, J. Zhang, Q. Yang, Bioorg. Med. Chem. 26 (2018) 394–400.
S. Shen, W. Chen, L. Dong, et al., J. Enzyme Inhib. Med. Chem. 33 (2018) 445–452.
doi: 10.1080/14756366.2017.1419217
L. Chen, Y. Zhou, M. Qu, Y. Zhao, Q. Yang, J. Biol. Chem. 289 (2014) 17932–17940.
X. Jiang, A. Kumar, T. Liu, K. Zhang, Q. Yang, J. Chem. Inf. Model. 56 (2016) 2413–2420.
doi: 10.1021/acs.jcim.6b00615
Y. Dong, X. Jiang, T. Liu, et al., J. Agric. Food Chem. 66 (2018) 3351–3357.
doi: 10.1021/acs.jafc.8b00017
Y. Dong, S. Hu, X. Jiang, et al., J. Agric. Food Chem. 67 (2019) 3575–3582.
doi: 10.1021/acs.jafc.9b00837
B. Jiang, X. Jin, Y. Dong, et al., J. Agric. Food Chem. 68 (2020) 6347–6354.
doi: 10.1021/acs.jafc.0c00522
B. Jiang, B. Guo, J. Cui, et al., Bioorg. Med. Chem. Lett. 30 (2020) 127500.
Q. Han, N. Wu, H. Li, et al., J. Agric. Food Chem. 69 (2021) 7534–7544.
doi: 10.1021/acs.jafc.0c08119
Q. Han, N. Wu, J. Zhang, et al., J. Agric. Food Chem. 71 (2023) 18685–18695.
doi: 10.1021/acs.jafc.3c05287
W. Chen, Y. Zhou, Q. Yang, J. Biol. Chem. 294 (2019) 9358–9364.
doi: 10.1074/jbc.ra119.007812
X. Jiang, A. Kumar, Y. Motomura, et al., J. Med. Chem. 63 (2020) 987–1001.
doi: 10.1021/acs.jmedchem.9b01154
L. Dong, S. Shen, X. Jiang, et al., J. Agric. Food Chem. 70 (2022) 12203–12210.
doi: 10.1021/acs.jafc.2c03997
P. Yuan, X. Jiang, S. Wang, et al., J. Agric. Food Chem. 68 (2020) 13584–13593.
doi: 10.1021/acs.jafc.0c03742
L. Zhu, L. Chen, X. Shao, et al., J. Agric. Food Chem. 69 (2021) 7526–7533.
doi: 10.1021/acs.jafc.0c07401
Q. Lu, L. Xu, L. Liu, et al., J. Agric. Food Chem. 69 (2021) 14086–14091.
doi: 10.1021/acs.jafc.1c05385
Z. Zhao, Q. Xu, W. Chen, et al., J. Agric. Food Chem. 70 (2022) 4889–4898.
doi: 10.1021/acs.jafc.2c00016
H. Qi, X. Jiang, Y. Ding, T. Liu, Q. Yang, Front Mol. Biosci. 8 (2021) 640356.
W. Li, Y. Ding, H. Qi, T. Liu, Q. Yang, J. Agric. Food Chem. 69 (2021) 10830–10837.
doi: 10.1021/acs.jafc.1c03629
Y. Ding, S. Chen, F. Zhang, et al., J. Agric. Food Chem. 71 (2023) 1845–1851.
doi: 10.1021/acs.jafc.2c06607
Y. Ding, S. Chen, H. Liu, T. Liu, Q. Yang, J. Agric. Food Chem. 71 (2023) 8769–8777.
doi: 10.1021/acs.jafc.3c00633
Z. Jiang, D. Shi, H. Li, et al., J. Agric. Food Chem. 70 (2022) 10326–10336.
doi: 10.1021/acs.jafc.2c03751
Q. Han, N. Wu, Y. Liu, et al., J. Agric. Food Chem. 70 (2022) 7387–7399.
doi: 10.1021/acs.jafc.2c02091
X. Jin, T. Sun, B. Guo, et al., J. Agric. Food Chem. 71 (2023) 8345–8355.
doi: 10.1021/acs.jafc.3c00775
Z. Zhao, W. Chen, Y. Dong, et al., J. Agric. Food Chem. 71 (2023) 12431–12439.
doi: 10.1021/acs.jafc.3c02448
L. Chen, L. Zhu, J. Chen, et al., J. Enzyme Inhib. Med. Chem. 35 (2020) 1937–1943.
doi: 10.1080/14756366.2020.1837123
W. Chen, Q. Chen, A. Kumar, et al., J. Enzyme Inhib. Med. Chem. 36 (2021) 1198–1204.
doi: 10.1080/14756366.2021.1931862
S. Shen, B. Ding, X. Jiang, et al., Front Chem. 10 (2022) 1021295.
X. Jin, T. Sun, X. Zhang, et al., J. Agric. Food Chem. 71 (2023) 244–254.
doi: 10.1021/acs.jafc.2c06516
E. Cohen, Pest Manag. Sci. 57 (2001) 946–950.
F. Matsumura, Pestic. Biochem. Phys. 97 (2010) 133–139.
H. Merzendorfer, Insect Sci. 20 (2013) 121–138.
doi: 10.1111/j.1744-7917.2012.01535.x
H. Merzendorfer, L. Zimoch, J. Exp. Biol. 206 (2003) 4393–4412.
S. Muthukrishnan, H. Merzendorfer, Y. Arakane, K.J. Kramer, Chitin metabolism in insects, in: L. Gilbert (Ed. ), Insect Molecular Biology and Biochemistry, Academic Press, San Diego, 2012, pp. 193–235.
S. Muthukrishnan, H. Merzendorfer, Y. Arakane, Q. Yang, Chitin metabolic pathways in insects and their regulation, in: E. Cohen, B. Moussian (Eds. ), Extracellular Composite Matrices in Arthropods, Springer, Cham, 2016, pp. 31–65.
Q. Yang, T. Fukamizo, Targeting Chitin-containing Organisms, 1st. ed, Springer, Singapore, 2019.
W. Chen, X. Jiang, Q. Yang, Biotechnol. Adv. 43 (2020) 107553.
A. Yu, M. Beck, H. Merzendorfer, Q. Yang, Insect Biochem. Mol. Biol. 164 (2023) 104058.
T. Liu, Y. Duan, Q. Yang, Biotechnol. Adv. 36 (2018) 1127–1138.
W. Chen, Q. Yang, J. Agric. Food Chem. 68 (2020) 4559–4565.
doi: 10.1021/acs.jafc.0c00888
Y. Ding, Q. Lu, T. Liu, Q. Yang, Adv. Agrochem. 2 (2023) 306–312.
Q. Lu, H. Xie, M. Qu, T. Liu, Q. Yang, J. Agric. Food Chem. 71 (2023) 5944–5952.
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Shuaige Bai , Shuai Huang , Ting Luo , Bin Feng , Yanpeng Fang , Feiyi Chu , Jie Dong , Wenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054
Fenglin Jiang , Anan Liu , Qian Wei , Youcai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504