Multiphoton photoredox catalysis enables selective hydrodefluorinations
-
* Corresponding author.
E-mail address: magnus.rueping@kaust.edu.sa (M. Rueping).
Citation:
Jiaqi Jia, Kathiravan Murugesan, Chen Zhu, Huifeng Yue, Shao-Chi Lee, Magnus Rueping. Multiphoton photoredox catalysis enables selective hydrodefluorinations[J]. Chinese Chemical Letters,
;2025, 36(2): 109866.
doi:
10.1016/j.cclet.2024.109866
K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
doi: 10.1126/science.1131943
D. O'Hagan, Chem. Soc. Rev. 37 (2008) 308–319.
doi: 10.1039/B711844A
S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
doi: 10.1039/B610213C
J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Chem. Rev. 114 (2014) 2432–2506.
doi: 10.1021/cr4002879
J. Clayden, Nature 573 (2019) 37–38.
doi: 10.1038/d41586-019-02611-7
Z. Feng, Y.L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264–2278.
doi: 10.1021/acs.accounts.8b00230
P.S. Fier, J.F. Hartwig, J. Am. Chem. Soc. 134 (2012) 5524–5527.
doi: 10.1021/ja301013h
R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Chem. Soc. Rev. 40 (2011) 3496–3508.
doi: 10.1039/c0cs00221f
Y. Zhou, J. Wang, Z. Gu, et al., Chem. Rev. 116 (2016) 422–518.
doi: 10.1021/acs.chemrev.5b00392
J.A. Erickson, J.I. McLoughlin, J. Org. Chem. 60 (1995) 1626–1631.
doi: 10.1021/jo00111a021
C.D. Sessler, M. Rahm, S. Becker, et al., J. Am. Chem. Soc. 139 (2017) 9325–9332.
doi: 10.1021/jacs.7b04457
E.P. Gillis, K.J. Eastman, M.D. Hill, D.J. Donnelly, N.A. Meanwell, J. Med. Chem. 58 (2015) 8315–8359.
doi: 10.1021/acs.jmedchem.5b00258
N.A. Meanwell, J. Med. Chem. 61 (2018) 5822–5880.
doi: 10.1021/acs.jmedchem.7b01788
R.P. Singh, J.n.M. Shreeve, Synthesis 2002 (2002) 2561–2578.
doi: 10.1039/b205288c
K. Yang, M. Song, A.I.M. Ali, S.M. Mudassir, H. Ge, Chem. Asian J. 15 (2020) 729–741.
doi: 10.1002/asia.202000011
M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612–633.
doi: 10.1021/cr500366b
Y.J. Yu, F.L. Zhang, T.Y. Peng, et al., Science 371 (2021) 1232–1240.
doi: 10.1126/science.abg0781
G. Yan, Chem. Eur. J. 28 (2022) e202200231.
doi: 10.1002/chem.202200231
S.E. Wright, J.S. Bandar, J. Am. Chem. Soc. 144 (2022) 13032–13038.
doi: 10.1021/jacs.2c05044
J. Xu, J.W. Liu, R. Wang, et al., ACS Catal. 13 (2023) 7339–7346.
doi: 10.1021/acscatal.3c00669
C. Liu, K. Li, R. Shang, ACS Catal. 12 (2022) 4103–4109.
doi: 10.1021/acscatal.2c00592
S.S. Yan, S.H. Liu, L. Chen, et al., Chemistry 7 (2021) 3099–3113.
doi: 10.1016/j.chempr.2021.08.004
J. Sheng, X. Cheng, CCS Chem. 6 (2024) 230–240.
doi: 10.31635/ccschem.023.202302835
Z.J. Shen, C. Zhu, X. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202217244.
doi: 10.1002/anie.202217244
H. Dang, A.M. Whittaker, G. Lalic, Chem. Sci. 7 (2016) 505–509.
doi: 10.1039/C5SC03415A
H. Wang, N.T. Jui, J. Am. Chem. Soc. 140 (2018) 163–166.
doi: 10.1021/jacs.7b12590
S. Ghosh, Z.W. Qu, S. Pradhan, et al., Angew. Chem. Int. Ed. 61 (2022) e202115272.
doi: 10.1002/anie.202115272
K. Chen, N. Berg, R. Gschwind, B. König, J. Am. Chem. Soc. 139 (2017) 18444–18447.
doi: 10.1021/jacs.7b10755
J.B.I. Sap, N.J.W. Straathof, T. Knauber, et al., J. Am. Chem. Soc. 142 (2020) 9181–9187.
doi: 10.1021/jacs.0c03881
M.W. Campbell, V.C. Polites, S. Patel, et al., J. Am. Chem. Soc. 143 (2021) 19648–19654.
doi: 10.1021/jacs.1c11059
J.H. Ye, P. Bellotti, C. Heusel, F. Glorius, Angew. Chem. Int. Ed. 61 (2022) e202115456.
doi: 10.1002/anie.202115456
P. Wessig, O. Muehling, Eur. J. Org. Chem. 2007 (2007) 2219–2232.
doi: 10.1002/ejoc.200600915
I. Ghosh, T. Ghosh, J.I. Bardagi, B. König, Science 346 (2014) 725–728.
doi: 10.1126/science.1258232
F. Glaser, C. Kerzig, O.S. Wenger, Angew. Chem. Int. Ed. 59 (2020) 10266–10284.
doi: 10.1002/anie.201915762
J. Xu, J. Cao, X. Wu, et al., J. Am. Chem. Soc. 143 (2021) 13266–13273.
doi: 10.1021/jacs.1c05994
F. Brandl, S. Bergwinkl, C. Allacher, B. Dick, Chem. Eur. J. 26 (2020) 7946–7954.
doi: 10.1002/chem.201905167
A.F. Chmiel, O.P. Williams, C.P. Chernowsky, C.S. Yeung, Z.K. Wickens, J. Am. Chem. Soc. 143 (2021) 10882–10889.
doi: 10.1021/jacs.1c05988
B.D. Ravetz, A.B. Pun, E.M. Churchill, et al., Nature 565 (2019) 343–346.
doi: 10.1038/s41586-018-0835-2
M.L. Czyz, M.S. Taylor, T.H. Horngren, A. Polyzos, ACS Catal. 11 (2021) 5472–5480.
doi: 10.1021/acscatal.1c01000
T.U. Connell, C.L. Fraser, M.L. Czyz, et al., J. Am. Chem. Soc. 141 (2019) 17646–17658.
doi: 10.1021/jacs.9b07370
A. Chatterjee, B. König, Angew. Chem. Int. Ed. 58 (2019) 14289–14294.
doi: 10.1002/anie.201905485
Y. Baek, A. Reinhold, L. Tian, et al., J. Am. Chem. Soc. 145 (2023) 12499–12508.
doi: 10.1021/jacs.2c13249
L. Chen, Q. Qu, C.K. Ran, et al., Angew. Chem. Int. Ed. 62 (2023) e202217918.
doi: 10.1002/anie.202217918
Y. Liu, Z.H. Wang, G.H. Xue, et al., Chin. Chem. Lett. 35 (2024) 109138.
doi: 10.1016/j.cclet.2023.109138
L. Song, W. Wang, J.P. Yue, et al., Nat. Catal. 5 (2022) 832–838.
doi: 10.1038/s41929-022-00841-z
I.A. MacKenzie, L. Wang, N.P.R. Onuska, et al., Nature 580 (2020) 76–80.
doi: 10.1038/s41586-020-2131-1
H. Zhao, D. Leonori, Angew. Chem. Int. Ed. 60 (2021) 7669–7674.
doi: 10.1002/anie.202100051
J.W. Beatty, C.R.J. Stephenson, Acc. Chem. Res. 48 (2015) 1474–1484.
doi: 10.1021/acs.accounts.5b00068
D.B. Vogt, C.P. Seath, H. Wang, N.T. Jui, J. Am. Chem. Soc. 141 (2019) 13203–13211.
doi: 10.1021/jacs.9b06004
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Minjun Yin , Yuhui Lin , Manli Zhuang , Wei Xiao , Jie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472