Mesoporous organic solar cells
-
* Corresponding authors.
E-mail addresses: xiaocy@mail.buct.edu.cn (C. Xiao), fengguitao@iccas.ac.cn (G. Feng), liweiwei@iccas.ac.cn (W. Li).
Citation:
Chengcheng Xie, Chengyi Xiao, Hongshuo Niu, Guitao Feng, Weiwei Li. Mesoporous organic solar cells[J]. Chinese Chemical Letters,
;2024, 35(11): 109849.
doi:
10.1016/j.cclet.2024.109849
Y. Lin, J. Wang, Z.G. Zhang, et al., Adv. Mater. 27 (2015) 1170–1174.
doi: 10.1002/adma.201404317
J. Yuan, Y. Zhang, L. Zhou, et al., Joule 3 (2019) 1140–1151.
doi: 10.1016/j.joule.2019.01.004
J. Yuan, Y.P. Zou, Org. Electron. 102 (2022) 106436.
doi: 10.1016/j.orgel.2022.106436
Y. Liu, B. Liu, C.Q. Ma, et al., Sci. China Chem. 65 (2021) 224–268.
Y. Yang, ACS Nano 15 (2021) 18679–18682.
doi: 10.1021/acsnano.1c10365
J. Song, Z. Bo, Chin. Chem. Lett. 34 (2023) 108163.
doi: 10.1016/j.cclet.2023.108163
Q. Burlingame, X. Huang, X. Liu, et al., Nature 573 (2019) 394–397.
doi: 10.1038/s41586-019-1544-1
F.C. Krebs, N. Espinosa, M. Hösel, R.R. Søndergaard, M. Jørgensen, Adv. Mater. 26 (2014) 29–39.
doi: 10.1002/adma.201302031
P. Cheng, X. Zhan, Chem. Soc. Rev. 45 (2016) 2544–2582.
doi: 10.1039/C5CS00593K
S. Park, T. Kim, S. Yoon, et al., Adv. Mater. 32 (2020) 2002217.
doi: 10.1002/adma.202002217
Q. Liang, W. Li, H. Lu, et al., ACS Appl. Energy Mater. 6 (2022) 31–50.
S. Liang, X. Jiang, C. Xiao, et al., Acc. Chem. Res. 54 (2021) 2227–2237.
doi: 10.1021/acs.accounts.1c00070
C. Guan, C.Y. Xiao, X. Liu, et al., Angew. Chem. 135 (2023) 202312357.
doi: 10.1002/ange.202312357
X. Liu, Z. Zhang, C. Wang, et al., Angew. Chem. 136 (2024) 202316039.
doi: 10.1002/ange.202316039
D. Qiu, Y. Shi, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 108019.
doi: 10.1016/j.cclet.2022.108019
W.R. Mateker, M.D. McGehee, Adv. Mater. 29 (2017) 1603940.
doi: 10.1002/adma.201603940
L.M. Chen, Z.R. Hong, G. Li, Y. Yang, Adv. Mater. 21 (2009) 1434–1449.
doi: 10.1002/adma.200802854
K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Chem. Soc. Rev. 45 (2016) 2937–2975.
doi: 10.1039/C5CS00831J
Y.M. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23 (2011) 1679–1683.
doi: 10.1002/adma.201004301
J. You, C.C. Chen, L. Dou, et al., Adv. Mater. 24 (2012) 5267–5272.
doi: 10.1002/adma.201201958
C.H. Liu, C.Y. Xiao, W.W. Li, J. Mater. Chem. C 9 (2021) 14093–14114.
doi: 10.1039/d1tc03434k
Z.Q. Liang, Q.F. Zhang, L. Jiang, G.Z. Cao, Energy Environ. Sci. 8 (2015) 3442–3476.
doi: 10.1039/C5EE02510A
M. Krzywiecki, L. Grządziel, A. Sarfraz, et al., Phys. Chem. Chem. Phys. 17 (2015) 10004–10013.
doi: 10.1039/C5CP00112A
M. Hartel, S. Chen, B. Swerdlow, et al., ACS Appl. Mater. Interfaces 5 (2013) 7215–7218.
doi: 10.1021/am4015605
S. Chen, C.E. Small, C.M. Amb, et al., Adv. Energy Mater. 2 (2012) 1333–1337.
doi: 10.1002/aenm.201200184
S. Wilken, J. Parisi, H. Borchert, J. Phys. Chem. C 118 (2014) 19672–19682.
doi: 10.1021/jp506641m
C.E. Small, S. Chen, J. Subbiah, et al., Nat. Photonics 6 (2012) 115–120.
doi: 10.1038/nphoton.2011.317
Y. Sun, M. Chang, L. Meng, et al., Nat. Electron. 2 (2019) 513–520.
doi: 10.1038/s41928-019-0315-1
W. Liu, H. Lu, Y. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107495.
doi: 10.1016/j.cclet.2022.05.009
Y. Wang, X. Tang, L. Yin, et al., Adv. Mater. 12 (2000) 1183–1186.
doi: 10.1002/1521-4095(200008)12:16<1183::AID-ADMA1183>3.0.CO;2-X
A.A. Ismail, D.W. Bahnemann, J. Mater. Chem. 21 (2011) 11686.
doi: 10.1039/c1jm10407a
A. Mei, X. Li, L. Liu, et al., Science 345 (2014) 295–298.
doi: 10.1126/science.1254763
Y. Rong, Y. Hu, A. Mei, et al., Science 361 (2018) eaat8235.
doi: 10.1126/science.aat8235
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, Chem. Rev. 120 (2020) 7867–7918.
doi: 10.1021/acs.chemrev.0c00107
E. Lancelle-Beltran, P. Prené, C. Boscher, et al., Chem. Mater. 18 (2006) 6152–6156.
doi: 10.1021/cm060925z
K.M. Coakley, M.D. McGehee, Appl. Phys. Lett. 83 (2003) 3380–3382.
doi: 10.1063/1.1616197
S.J. Liang, X.D. Jiang, C.Y. Xiao, et al., Acc. Chem. Res. 54 (2021) 2227–2237.
doi: 10.1021/acs.accounts.1c00070
B. Zhang, Q. Li, D. Wang, et al., Nanomaterials 10 (2020) 2096.
doi: 10.3390/nano10112096
H. Santhanakrishnan, N. Mani, A. Jayaram, et al., Environ. Sci. Pollut. R. 28 (2021) 18768–18777.
doi: 10.1007/s11356-020-10547-z
A. Drygała, Z. Starowicz, K. Gawlińska-Nęcek, et al., Molecules 28 (2023) 5656.
doi: 10.3390/molecules28155656
A. Gunasekaran, A.K. Rajamani, C. Masilamani, et al., Catalysts 13 (2023) 215.
doi: 10.3390/catal13020215
Y. Li, X. Huang, K. Ding, et al., Nat. Commun. 12 (2021) 5419.
doi: 10.1038/s41467-021-25718-w
Y.Y. Jiang, L.L. Sun, F.Y. Jiang, et al., Mater. Horiz. 6 (2019) 1438–1443.
doi: 10.1039/c9mh00379g
B.J. Zhou, L. Wang, Y. Liu, et al., Adv. Funct. Mater. 32 (2022) 2206042.
doi: 10.1002/adfm.202206042
Z.X. Liu, Z.P. Yu, Z. Shen, et al., Nat. Commun. 12 (2021) 3049.
doi: 10.1038/s41467-021-23389-1
S.J. Liang, B.Q. Liu, S. Karuthedath, et al., Angew. Chem. Int. Ed. 61 (2022) 202209316.
doi: 10.1002/anie.202209316
Z. Zhang, J. Wang, Z. Hu, et al., Chin. Chem. Lett. 34 (2023) 108527.
doi: 10.1016/j.cclet.2023.108527
C.H. Liu, C.Y. Xiao, J. Wang, et al., Macromolecules 55 (2022) 5964–5974.
doi: 10.1021/acs.macromol.2c00741
K. Zhou, K. Xian, Q. Qi, et al., Adv. Funct. Mater. 32 (2022) 2201781.
doi: 10.1002/adfm.202201781
K.H. Xian, K.K. Zhou, M.F. Li, et al., Chin. J. Chem. 41 (2023) 159–166.
doi: 10.1002/cjoc.202200564
C. Li, J. Zhou, J. Song, et al., Nat. Energy 6 (2021) 605–613.
doi: 10.1038/s41560-021-00820-x
Y. Cui, H.F. Yao, J.Q. Zhang, et al., Nat. Commun. 10 (2019) 2515.
doi: 10.1109/jbhi.2018.2882885
H. Yao, Y. Cui, D. Qian, et al., J. Am. Chem. Soc. 141 (2019) 7743–7750.
doi: 10.1021/jacs.8b12937
Z. Zheng, H.F. Yao, L. Ye, et al., Mater. Today 35 (2020) 115–130.
doi: 10.1016/j.mattod.2019.10.023
Y. Sun, W. Chen, Z. Sun, Chin. Chem. Lett. 33 (2022) 1772–1778.
doi: 10.1016/j.cclet.2021.08.055
T. Zhu, Y. Yang, S. Zhou, et al., Chin. Chem. Lett. 31 (2020) 2249–2253.
doi: 10.1016/j.cclet.2020.02.004
S. Abdellatif, P. Sharifi, K. Kirah, et al., Micropor. Mesopor. Mat. 264 (2018) 84–91.
doi: 10.1016/j.micromeso.2018.01.011
A. Peic, D. Staff, T. Risbridger, et al., J. Phys. Chem. C 115 (2011) 613–619.
doi: 10.1021/jp109316j
N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed., Clarendon Press, Oxford, 1948.
P.N. Murgatroyd, J. Phys. D: Appl. Phys. 3 (1970) 151–156.
doi: 10.1088/0022-3727/3/2/308
P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Adv. Mater. 19 (2007) 1551–1566.
doi: 10.1002/adma.200601093
S.R. Cowan, A. Roy, A.J. Heeger, Phys. Rev. B 82 (2010) 245207.
doi: 10.1103/PhysRevB.82.245207
L.J.A. Koster, M. Kemerink, M.M. Wienk, K. Maturová, R.A.J. Janssen, Adv. Mater. 23 (2011) 1670–1674.
doi: 10.1002/adma.201004311
B. Zhang, F. Yang, S.S. Chen, et al., Adv. Funct. Mater. 32 (2022) 2202011.
doi: 10.1002/adfm.202202011
C.C. Xie, B.Q. Liu, C.Y. Xiao, et al., Chem. Eng. J. 461 (2023) 142124.
doi: 10.1016/j.cej.2023.142124
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223
Supphachok Chanmungkalakul , Syed Ali Abbas Abedi , Federico J. Hernández , Jianwei Xu , Xiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378