Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution
-
* Corresponding authors.
E-mail addresses: xlyu@cugb.edu.cn (X. Yu), guochenglv@cugb.edu.cn (G. Lv).
Citation:
Xinyu Hou, Xuelian Yu, Meng Liu, Hengxing Peng, Lijuan Wu, Libing Liao, Guocheng Lv. Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution[J]. Chinese Chemical Letters,
;2025, 36(4): 109845.
doi:
10.1016/j.cclet.2024.109845
J.Q. Chi, M. Yallg, Y.M. Chai, et al., J. Energy Chem. 48 (2022) 398–423.
X.L. Fan, C. Liu, M.Y. Wu, et al., Appl. Catal. B: Environ. 318 (2022) 121867.
Y.M. Liu, Chem. Bio. Engin. 3 (2007) 79–81.
B.H. Suryanto, Y. Wang, R.K. Hocking, et al., Nat. Commun. 10 (2019) 5599.
doi: 10.1038/s41467-019-13415-8
S.D. Lu, B.Y. Lu, G.C. Tan, et al., Biosens. Bioelectron. 167 (2020) 112491.
L.N. Chen, S.H. Wang, P.Y. Zhang, et al., Nano Energy 88 (2021) 106211.
doi: 10.1016/j.nanoen.2021.106211
H.Q. Fu, M. Zhou, P.F. Liu, et al., J. Am. Chem. Soc. 144 (2022) 6028–6039.
doi: 10.1021/jacs.2c01094
J.Y. Yu, A.Z. Wang, W.Q. Yu, et al., Appl. Catal. B: Environ. 277 (2020) 119236.
D.Y. Ren, G.W. Wang, L.Y. Li, et al., Chem. Eng. J. 454 (2023) 140557.
Y.N. Zhou, F.L. Wang, J. Nan, et al., Appl. Catal. B: Environ. 304 (2022) 120917.
J. Zhang, G. Chen, Q. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e20220948.
Z.X. Yang, Z.Z. Wang, J.T. Wan, et al., Environ. Sci. Technol. 56 (2022) 18008–18017.
doi: 10.1021/acs.est.2c06571
C. Li, H. Jang, M.G. Kim, et al., Appl. Catal. B: Environ. 307 (2022) 121204.
doi: 10.1016/j.apcatb.2022.121204
H. Song, M. Wu, Z. Tang, et al., Angew. Chem. Int. Ed. 60 (2021) 7234–7244.
doi: 10.1002/anie.202017102
X. Shi, A.P. Wu, H.J. Yan, et al., J. Mater. Chem. A 6 (2018) 20100–20109.
doi: 10.1039/c8ta07906d
C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43 (2014) 6555–6569.
doi: 10.1039/c3cs60468c.
X. Wang, J. He, B. Yu, et al., Appl. Catal. B: Environ. 258 (2019) 117996.
K.K. Turaczy, W.J. Liao, et al., ACS Catal. 13 (2023) 14268–14276.
doi: 10.1021/acscatal.3c04063
Y.C. Kimmel, D.V. Esposito, R.W. Birkmire, et al., Int. J. Hydrogen Energy 37 (2012) 3019–3024.
Y.Y. Chen, Y. Zhang, J. W, et al., ACS Nano 10 (2016) 8851–8860.
doi: 10.1021/acsnano.6b04725
D.J. Ham, J.S. Lee, Energies 2 (2009) 873–899.
doi: 10.3390/en20400873
L. Zhe, M. Tahir, X.W. Lang, et al., J. Mater. Chem. A 5 (2017) 20932.
doi: 10.1039/C7TA06981B
K. Ojha, S. Saha, S. Banerjee, A.K. Ganguli, et al., ACS Appl. Mater. Interfaces 9 (2017) 19455–19461.
doi: 10.1021/acsami.6b10717
L.M. Dai, F.L. Yao, L. Yu, et al., Adv. Energy Mater. 12 (2022) 2200974.
J. Li, Y.N. Zhou, W.J. Tang, et al., Appl. Catal. B: Environ. 285 (2021) 119861.
Z. Wei, P. Grange, B. Delmon, Appl. Surf. Sci. 135 (1998) 107–114.
doi: 10.3724/j.issn.1000-0518.1998.4.107
W.F. Chen, K. Sasaki, C. Ma, et al., Angew. Chem. Int. Ed. 51 (2012) 6131–6135.
doi: 10.1002/anie.201200699
Z.X. Yang, Y. Li, X.T. Wang, et al., J. Environ. Sci. 142 (2024) 204–214.
doi: 10.3390/agronomy14010204
Z. Zhao, J. Sun, X. Li, et al., Appl. Catal. B 340 (2024) 123277–123293.
doi: 10.1016/j.apcatb.2023.123277
Y. Yao, Z. Huang, P. Xie, et al., Science 359 (2018) 1489–1494.
doi: 10.1126/science.aan5412
Q.L. Wu, Y.H. Kang, G.H. Chen, et al., Adv. Funct. Mater. (2024) 2315248.
F. Chen, X.L. Wu, C. Shi, et al., Adv. Funct. Mater. 31 (2021) 2007877.
doi: 10.1002/adfm.202007877
B.X. Zhou, S.S. Ding, K.X. Yang, et al., Adv. Funct. Mater. 31 (2020) 2009230.
doi: 10.1002/adfm.202009230
J. Jia, T.L. Xiong, L.L. Zhao, et al., ACS Nano 11 (2017) 12509–12518.
doi: 10.1021/acsnano.7b06607
C. Tang, H. Zhang, K. Xu, et al., J. Mater. Chem. A 7 (2019) 18030–18038.
doi: 10.1039/c9ta04374h
L.N. Zhang, Z.L. Lang, Y.H. Wang, et al., Science 12 (2019) 2569–2580.
doi: 10.1039/c9ee01647c
P. Li, M. Wang, X.L. Duan, et al., Nat. Commun. 10 (2019) 1711.
doi: 10.1007/s00192-018-3796-y
Y. Hu, G. Luo, L. Wang, et al., Adv. Energy Mater. 11 (2021) 2002816.
doi: 10.1002/aenm.202002816
A.C. Mtukula, X.J. Boand, L.P. Guo, J. Alloys Compd. 692 (2017) 614–621.
doi: 10.1016/j.jallcom.2016.09.079
Y.P. Zhu, G. Chen, X.M. Xu, et al., ACS Catal. 7 (2017) 3540–3547.
doi: 10.1021/acscatal.7b00120
M. Zeng, Y. Li, Mater. Chem. A 3 (2015) 14942–14962.
doi: 10.1039/C5TA02974K
M. Yao, H. Hu, B. Sun, et al., Small 15 (2019) 1905201.
doi: 10.1002/smll.201905201
T.T. Chao, W.B. Xie, Y.M. Hu, et al., Energy Environ. Sci. 17 (2024) 1397–1406.
doi: 10.1039/d3ee02760k
J.S. Li, Y. Wang, C.H. Liu, et al., Nat. Commun. 7 (2016) 11204.
doi: 10.1038/ncomms11204
K. Qu, Y. Zheng, X. Zhang, et al., ACS Nano 11 (2017) 7293–7300.
doi: 10.1021/acsnano.7b03290
C. Lu, D. Tranca, J. Zhang, et al., ACS Nano 11 (2017) 3933–3942.
doi: 10.1021/acsnano.7b00365
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237