Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level
-
* Corresponding authors.
E-mail addresses: wan.qq@whu.edu.cn (Q. Wan), sm.chen@whu.edu.cn (S. Chen).
Citation: Junmeng Luo, Qiongqiong Wan, Suming Chen. Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level[J]. Chinese Chemical Letters, ;2025, 36(1): 109836. doi: 10.1016/j.cclet.2024.109836
G.v. Meer, D.R. Voelker, G.W. Feigenson, Nat. Rev. Mol. Cell Biol. 9 (2008) 112–124.
doi: 10.1038/nrm2330
M.R. Wenk, Cell 143 (2010) 888–895.
doi: 10.1016/j.cell.2010.11.033
R. Bandu, H.J. Mok, K.P. Kim, Mass Spectrom. Rev. 37 (2016) 107–138.
X. Tian, D. Wu, W. Wei, et al., Chin. Chem. Lett. 35 (2024) 108912.
doi: 10.1016/j.cclet.2023.108912
P. Xie, J. Zhang, P. Wu, et al., Chin. Chem. Lett. 34 (2023) 107349.
doi: 10.1016/j.cclet.2022.03.072
Y.H. Rustam, G.E. Reid, Anal. Chem. 90 (2018) 374–397.
doi: 10.1021/acs.analchem.7b04836
A. Tan, X. Ma, Chin. Chem. Lett. 35 (2024) 109276.
doi: 10.1016/j.cclet.2023.109276
S.J. Blanksby, T.W. Mitchell, Annu. Rev. Anal. Chem. 3 (2010) 433–465.
doi: 10.1146/annurev.anchem.111808.073705
J. Chen, P. Xie, P. Wu, et al., Chin. Chem. Lett. 35 (2024) 108895.
doi: 10.1016/j.cclet.2023.108895
T. Porta Siegel, K. Ekroos, S.R. Ellis, Angew. Chem. Int. Ed. 58 (2019) 6492–6501.
doi: 10.1002/anie.201812698
J.H. Lorent, K.R. Levental, L. Ganesan, et al., Nat. Chem. Biol. 16 (2020) 644–652.
doi: 10.1038/s41589-020-0529-6
W. Zhang, R. Jian, J. Zhao, Y. Liu, Y. Xia, J. Lipid Res. 63 (2022) 100219.
doi: 10.1016/j.jlr.2022.100219
H. Martinez-Seara, T. Rog, M. Pasenkiewicz-Gierula, et al., Biophys. J. 95 (2008) 3295–3305.
doi: 10.1529/biophysj.108.138123
N.S. Kelley, N.E. Hubbard, K.L. Erickson, J. Nutr. 137 (2007) 2599–2607.
doi: 10.1093/jn/137.12.2599
Y.M. Zhang, C.O. Rock, Nat. Rev. Microbiol. 6 (2008) 222–233.
doi: 10.1038/nrmicro1839
W. Zhang, D. Zhang, Q. Chen, et al., Nat. Commun. 10 (2019) 79.
doi: 10.1109/ictis.2019.8883706
P. Li, W.D. Hoffmann, G.P. Jackson, Int. J. Mass Spectrom. 403 (2016) 1–7.
doi: 10.1109/MESA.2016.7587162
H.T. Pham, T. Ly, A.J. Trevitt, T.W. Mitchell, S.J. Blanksby, Anal. Chem. 84 (2012) 7525–7532.
doi: 10.1021/ac301652a
P.E. Williams, D.R. Klein, S.M. Greer, J.S. Brodbelt, J. Am. Chem. Soc. 139 (2017) 15681–15690.
doi: 10.1021/jacs.7b06416
O.S. Privett, C. Nickell, J. Am. Oil Chemists’ SOC 39 (1962) 414–419.
doi: 10.1007/BF02632864
O.S. Privett, M.L. Blank, O. Romanus, J. lipid Res. 4 (1963) 260–265.
doi: 10.1016/S0022-2275(20)40299-8
M.C. Thomas, T.W. Mitchell, S.J. Blanksby, J. Am. Chem. Soc. 128 (2006) 58–59.
doi: 10.1021/ja056797h
M.C. Thomas, T.W. Mitchell, D.G. Harman, et al., Anal. Chem. 80 (2008) 303–311.
doi: 10.1021/ac7017684
M.C. Thomas, T.W. Mitchell, D.G. Harman, et al., Anal. Chem. 79 (2007) 5013–5022.
doi: 10.1021/ac0702185
S.H. Brown, T.W. Mitchell, S.J. Blanksby, Biochim. Biophys. Acta 1811 (2011) 807–817.
doi: 10.1016/j.bbalip.2011.04.015
H.T. Pham, A.T. Maccarone, M.C. Thomas, et al., Analyst 139 (2014) 204–214.
doi: 10.1039/C3AN01712E
H.T. Pham, A.T. Maccarone, J.L. Campbell, T.W. Mitchell, S.J. Blanksby, J. Am. Soc. Mass Spectrom. 24 (2013) 286–296.
doi: 10.1007/s13361-012-0521-9
M.R.L. Paine, B.L.J. Poad, G.B. Eijkel, et al., Angew. Chem. Int. Ed. 57 (2018) 10530–10534.
doi: 10.1002/anie.201802937
B.L. Poad, M.R. Green, J.M. Kirk, et al., Anal. Chem. 89 (2017) 4223–4229.
doi: 10.1021/acs.analchem.7b00268
B.S.R. Claes, A.P. Bowman, B.L.J. Poad, et al., Anal. Chem. 93 (2021) 9826–9834.
doi: 10.1021/acs.analchem.1c01377
B.L.J. Poad, X. Zheng, T.W. Mitchell, et al., Anal. Chem. 90 (2018) 1292–1300.
doi: 10.1021/acs.analchem.7b04091
X. Liu, B. Jiao, W. Cao, et al., Anal. Chem. 94 (2022) 13944–13950.
doi: 10.1021/acs.analchem.2c03112
M. Fréneau, N. Hoffmann, J. Photochem. Photobiol. C 33 (2017) 83–108.
doi: 10.1016/j.jphotochemrev.2017.10.002
M. D’Auria, Photochem. Photobiol. Sci. 18 (2019) 2297–2362.
doi: 10.1039/c9pp00148d
X. Ma, Y. Xia, Angew. Chem. Int. Ed. 53 (2014) 2592–2596.
doi: 10.1002/anie.201310699
X. Ma, L. Chong, R. Tian, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 2573–2578.
doi: 10.1073/pnas.1523356113
J. Zhao, X. Xie, Q. Lin, et al., Anal. Chem. 92 (2020) 13470–13477.
doi: 10.1021/acs.analchem.0c02896
T. Xu, Z. Pi, F. Song, S. Liu, Z. Liu, Anal. Chim. Acta 1028 (2018) 32–44.
doi: 10.1016/j.aca.2018.04.046
A. Bednarik, S. Bolsker, J. Soltwisch, K. Dreisewerd, Angew. Chem. Int. Ed. 57 (2018) 12092–12096.
doi: 10.1002/anie.201806635
P. Klan, T. Solomek, C.G. Bochet, et al., Chem. Rev. 113 (2013) 119–191.
doi: 10.1021/cr300177k
X. Xie, J. Zhao, M. Lin, J.L. Zhang, Y. Xia, Anal. Chem. 92 (2020) 8487–8496.
doi: 10.1021/acs.analchem.0c01241
Z. Li, S. Cheng, Q. Lin, et al., Nat. Commun. 12 (2021) 2869.
doi: 10.1038/s41467-021-23161-5
P. Esch, S. Heiles, J. Am. Soc. Mass Spectrom. 29 (2018) 1971–1980.
doi: 10.1007/s13361-018-2023-x
F. Wäldchen, B. Spengler, S. Heiles, J. Am. Chem. Soc. 141 (2019) 11816–11820.
doi: 10.1021/jacs.9b05868
G. Feng, Y. Hao, L. Wu, S. Chen, Chem. Sci. 11 (2020) 7244–7251.
doi: 10.1039/d0sc01149e
H.F. Li, W.B. Cao, X.X. Ma, et al., J. Am. Chem. Soc. 142 (2020) 3499–3505.
doi: 10.1021/jacs.9b12120
G. Feng, M. Gao, L. Wang, et al., Nat. Commun. 13 (2022) 2652.
doi: 10.1038/s41467-022-30249-z
C. Sun, C. Ma, L. Li, et al., Chin. Chem. Lett. 33 (2022) 2073–2076.
doi: 10.1016/j.cclet.2021.08.034
H.X. Shi, Z.S. Tan, X.Y. Guo, et al., Anal. Chem. 95 (2023) 5117–5125.
doi: 10.1021/acs.analchem.3c00085
D.E. Minnikin, Chem. Phys. Lipids 21 (1978) 313–347.
doi: 10.1016/0009-3084(78)90045-2
Y. Zhao, H. Zhao, X. Zhao, et al., Anal. Chem. 89 (2017) 10270–10278.
doi: 10.1021/acs.analchem.7b01870
W. Cao, X. Ma, Z. Li, X. Zhou, Z. Ouyang, Anal. Chem. 90 (2018) 10286–10292.
doi: 10.1021/acs.analchem.8b02021
Y. Feng, B. Chen, Q. Yu, L. Li, Anal. Chem. 91 (2019) 1791–1795.
doi: 10.1021/acs.analchem.8b04905
T.H. Kuo, H.H. Chung, H.Y. Chang, et al., Anal. Chem. 91 (2019) 11905–11915.
doi: 10.1021/acs.analchem.9b02667
A. Tu, K.P. Garrard, N. Said, D.C. Muddiman, Rapid Commun. Mass Spectrom. 35 (2021) e9119.
doi: 10.1002/rcm.9119
S. Tang, H. Cheng, X. Yan, Angew. Chem. Int. Ed. 59 (2019) 209–214.
S. Tang, X. Chen, Y. Ke, F. Wang, X. Yan, Anal. Chem. 94 (2022) 12750–12756.
doi: 10.1021/acs.analchem.2c02375
C. Song, D. Gao, S. Li, et al., Anal. Chim. Acta 1086 (2019) 82–89.
doi: 10.1016/j.aca.2019.08.023
S. Jia, S. Chang, L. Zhang, et al., Anal. Chem. 95 (2023) 3976–3985.
doi: 10.1021/acs.analchem.2c03759
M. Bouza, Y. Li, C. Wu, et al., J. Am. Soc. Mass Spectrom. 31 (2020) 727–734.
doi: 10.1021/jasms.0c00002
M. Bouza, Y. Li, A.C. Wang, Z.L. Wang, F.M. Fernandez, Anal. Chem. 93 (2021) 5468–5475.
doi: 10.1021/acs.analchem.0c05145
G. Feng, M. Gao, R. Fu, et al., bioRxiv (2022), doi:10.1101/2022.04.24.489320.
doi: 10.1101/2022.04.24.489320
B. Zhang, Y. Wang, B.W. Zhou, et al., Anal. Chem. 94 (2022) 6216–6224.
doi: 10.1021/acs.analchem.1c05607
Q. Wan, Y. Xiao, G. Feng, et al., Chin. Chem. Lett. 35 (2023) 108775.
M.R. Armbruster, M.E. Mostafa, R.N. Caldwell, et al., Analyst 148 (2023) 297–304.
doi: 10.1039/d2an01699k
T. Yang, S. Tang, S.T. Kuo, et al., Angew. Chem. Int. Ed. 61 (2022) e202207098.
doi: 10.1002/anie.202207098
G. Feng, M. Gao, H. Chen, et al., Anal. Chem. 96 (2024) 2524–2533.
doi: 10.1021/acs.analchem.3c04824
Y. Kwon, S. Lee, D.C. Oh, S. Kim, Angew. Chem. Int. Ed. 50 (2011) 8275–8278.
doi: 10.1002/anie.201102634
H.H. Chiu, C.H. Kuo, J. Food Drug Anal. 28 (2020) 60–73.
doi: 10.1016/j.jfda.2019.10.003
S.S. Bird, V.R. Marur, I.G. Stavrovskaya, B.S. Kristal, Anal. Chem. 84 (2012) 5509–5517.
doi: 10.1021/ac300953j
X. Xie, Y. Xia, Anal. Chem. 91 (2019) 7173–7180.
doi: 10.1021/acs.analchem.9b00374
J. Zheng, X. Dong, T.P. Yoon, Org. Lett. 22 (2020) 6520–6525.
doi: 10.1021/acs.orglett.0c02314
J.J. Molloy, M. Schafer, M. Wienhold, et al., Science 369 (2020) 302–306.
doi: 10.1126/science.abb7235
B.L. Poad, H.T. Pham, M.C. Thomas, et al., J. Am. Soc. Mass Spectrom. 21 (2010) 1989–1999.
doi: 10.1016/j.jasms.2010.08.011
G. Vayner, S.V. Addepalli, K. Song, W.L. Hase, J. Chem. Phys. 125 (2006) 014317.
doi: 10.1063/1.2206785
Y. Feng, Y. Lv, T.J. Gu, B. Chen, L. Li, Anal. Chem. 94 (2022) 13036–13042.
doi: 10.1021/acs.analchem.2c01917
X. Zhang, X. Ren, K. Chingin, et al., Anal. Chim. Acta 1139 (2020) 146–154.
doi: 10.1016/j.aca.2020.09.027
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Yang Feng , Yang-Qing Tian , Yong-Qiang Zhao , Sheng-Jun Chen , Bi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338