Citation: Xin Li, Ling Zhang, Yunyan Fan, Shaojing Lin, Yong Lin, Yongsheng Ying, Meijiao Hu, Haiying Gao, Xianri Xu, Zhongbiao Xia, Xinchuan Lin, Junjie Lu, Xiang Han. Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries[J]. Chinese Chemical Letters, ;2025, 36(2): 109776. doi: 10.1016/j.cclet.2024.109776 shu

Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries

    * Corresponding author.
    E-mail address: hanxiang@njfu.edu.cn (X. Han).
    1 These authors contribute equally to this work.
  • Received Date: 22 January 2024
    Revised Date: 22 February 2024
    Accepted Date: 14 March 2024
    Available Online: 16 March 2024

Figures(4)

  • Solid-state batteries (SSBs) with high-capacity Si anodes have been regarded as one of the most promising candidates to meet the large scale energy storage and electrical vehicles due to its intrinsic safety and potential high energy density. However, Si suffers from poor electrical conductivity and huge volume change and particles fracture during lithiaiotn and delithiation, which induces low practical energy density. In addition, the SSBs are often operated at high temperature due to the poor physical contact and huge resistance between Si and solid-state electrolyte (SSE). To improve the bulk electronic/ionic conductivity of Si and its interfacial compatibility with SSE, herein, a binder free and self-supporting Si/C film was developed. The monolithic carbon not only enhance the electric conductivity but also release huge stress during lithiation and delithiation. In addition, paired with the flexible and soft poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid-state electrolyte, a LiF-rich and electrochemical stable solid-electrolyte interphase (SEI) layer is in-situ engineered. The fast bulk and interfacial ionic transportation as well as the mechanical integrity of MSi enable high performance SSBs at room temperature. As a result, high specific capacity of 2137 mAh/g with an initial Coulombic efficiency of 83.2% is obtained at a rate of 0.5 A/g. Even at a high rate of 3 A/g, the specific capacity is 1793 mAh/g. At a rate of 1 A/g, the Si/C anode delivers a long cycling performance over 500 cycles while maintains a capacity of 1135 mAh/g. This work provides a new strategy that combines charge transfer kinetics and interfacial chemistry design toward high energy density Si-based SSBs.
  • 加载中
    1. [1]

      A. Manthiram, X. Yu, S. Wang, et al., Nat. Rev. Mater. 2 (2017) 1–16.

    2. [2]

      Y. Xiao, Y. Wang, S.H. Bo, et al., Nat. Rev. Mater. 5 (2020) 105–126.

    3. [3]

      X. Han, T. Wu, L.H. Gu, et al., Chin. Chem. Lett. 34 (2023) 107594.

    4. [4]

      F.Y. Zhang, Y.L. Liang, Z.R. Ye, et al., Chin. Chem. Lett. 35 (2024) 108655.

    5. [5]

      D.X. Cao, X. Sun, Y.J. Li, et al., Adv. Mater. 34 (2022) 2200401.

    6. [6]

      Z. Sun, Q. Yin, H. Chen, et al., Interdiscip. Mater. 2 (2023) 635–663.  doi: 10.1002/idm2.12111

    7. [7]

      F. Ren, Z. Liang, W. Zhao, et al., Energy Environ. Sci. 16 (2023) 2579–2590.  doi: 10.1039/d3ee00870c

    8. [8]

      J. Gu, H. Zhong, Z. Chen, et al., Chem. Eng. J. 454 (2023) 139923.

    9. [9]

      Y. Tang, L. Zhang, J. Chen, et al., Energy Environ. Sci. 14 (2021) 602–642.  doi: 10.1039/d0ee02525a

    10. [10]

      Q. Dai, J. Yao, C. Du, et al., Adv. Funct. Mater. 32 (2022) 2208682.

    11. [11]

      X.H. Liu, J.W. Wang, S. Huang, et al., Nat. Nanotechnol. 7 (2012) 749–756.  doi: 10.1038/nnano.2012.170

    12. [12]

      Y. Yu, H. Gao, J. Zhu, et al., Chin. Chem. Lett. 32 (2021) 203–209.

    13. [13]

      Y. He, L. Jiang, T. Chen, et al., Nat. Nanotechnol. 16 (2021) 1113.  doi: 10.1038/s41565-021-00947-8

    14. [14]

      N. Yang, J. Sun, R. Shao, et al., Cell Rep. Phys. Sci. 3 (2022) 100862.

    15. [15]

      H. Huo, J. Janek, ACS Energy Lett. 7 (2022) 4005–4016.  doi: 10.1021/acsenergylett.2c01950

    16. [16]

      X. Xu, Q. Sun, Y. Li, et al., Small 19 (2023) 2302934.

    17. [17]

      H. Liu, Q. Sun, H. Zhang, et al., Energy Storage Mater. 55 (2023) 244–263.

    18. [18]

      B. Chen, L. Chen, L. Zu, et al., Adv. Mater. 34 (2022) 2200894.

    19. [19]

      R. Yu, Y. Pan, Y. Jiang, et al., Adv. Mater. 35 (2023) 2306504.

    20. [20]

      D.H. Tan, Y.T. Chen, H. Yang, et al., Science 373 (2021) 1494.  doi: 10.1126/science.abg7217

    21. [21]

      Z. Zhao, F. Chen, J. Han, et al., Adv. Energy Mater. 13 (2023) 2300367.

    22. [22]

      M. Zhao, J. Zhang, C.M. Costa, et al., Adv. Mater. 36 (2024) 2308590.

    23. [23]

      R.B. Cervera, N. Suzuki, T. Ohnishi, et al., Energy Environ. Sci. 7 (2014) 662– 666.

    24. [24]

      X. Han, L.H. Gu, Z.F. Sun, et al., Energy Environ. Sci. 16 (2023) 5395–5408.  doi: 10.1039/d3ee01696j

    25. [25]

      L.H. Gu, J.J. Han, M.F. Chen, et al., Energy Storage Mater. 52 (2022) 547–561.

    26. [26]

      Z.Y. Zhang, Z. Sun, X. Han, et al., Energy Environ. Sci. 17 (2024) 1061–1072.

    27. [27]

      W. Yan, Z. Mu, Z. Wang, et al., Nat. Energy 8 (2023) 800–813.  doi: 10.1038/s41560-023-01279-8

    28. [28]

      R. Yu, Y. Pan, Y. Jiang, et al., Adv. Mater. 35 (2023) 2306504.

    29. [29]

      D. Cao, T. Ji, A. Singh, et al., Adv. Energy Mater. 13 (2023) 2203969.

    30. [30]

      X. Han, H. Chen, X. Li, et al., J. Mater. Chem. 4 (2016) 434–442.

    31. [31]

      X. Han, H. Chen, J. Liu, et al., Electrochim. Acta 156 (2015) 11–19.

    32. [32]

      X. Han, Z. Zhang, H. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020) 44840–44849.  doi: 10.1021/acsami.0c13821

    33. [33]

      X. Han, S. Wang, Y. Xu, et al., Energy Environ. Sci. 14 (2021) 5044–5056.  doi: 10.1039/d1ee01494c

    34. [34]

      P. Shi, J. Ma, M. Liu, et al., Nat. Nanotechnol. 18 (2023) 602–610.  doi: 10.1038/s41565-023-01341-2

    35. [35]

      T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 184 (2015) 483–499.

    36. [36]

      M.T. McDowell, S.W. Lee, W.D. Nix, Adv. Mater. 25 (2013) 4966–4985.  doi: 10.1002/adma.201301795

    37. [37]

      Z. Zhao, J. Han, F. Chen, et al., Adv. Energy Mater. 12 (2022) 2103565.

    38. [38]

      J. Chen, X. Fan, Q. Li, et al., Nat. Energy 5 (2020) 386–397.  doi: 10.1038/s41560-020-0601-1

    39. [39]

      P. Liang, H. Sun, C.L. Huang, et al., Adv. Mater. 34 (2022) 2207361.

  • 加载中
    1. [1]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    2. [2]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    5. [5]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    6. [6]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    7. [7]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    8. [8]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    9. [9]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    10. [10]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    11. [11]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    12. [12]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    13. [13]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    14. [14]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    15. [15]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    18. [18]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    19. [19]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

Metrics
  • PDF Downloads(0)
  • Abstract views(191)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return