-
[1]
M.S. Ziegler, J.E. Trancik, Energy Environ. Sci. 14 (2021) 1635–1651.
doi: 10.1039/d0ee02681f
-
[2]
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
-
[3]
Y. Kato, S. Hori, T. Saito, et al., Nat. Energy 1 (2016) 1–7.
-
[4]
Y. Li, S. Song, H. Kim, et al., Science 381 (2023) 50–53.
-
[5]
Y. Tanaka, K. Ueno, K. Mizuno, et al., Angew. Chem. Int. Ed. 62 (2023) e202217581.
-
[6]
J. Wu, L. Shen, Z. Zhang, et al., Electrochem. Energy Rev. 4 (2020) 101–135.
-
[7]
J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Adv. Mater. 33 (2020) 2000751.
-
[8]
S. Chen, D. Xie, G. Liu, et al., Energy Storage Mater. 14 (2018) 58–74.
-
[9]
X. Nie, J. Hu, C. Li, Interdiscip. Mater. 2 (2023) 365–389.
doi: 10.1002/idm2.12090
-
[10]
J.K. Hu, H. Yuan, S.J. Yang, et al., J. Energy Chem. 71 (2022) 612–618.
-
[11]
H. Chen, Y. Lu, H. Zhang, et al., Chem. Commun. 59 (2023) 7220–7223.
doi: 10.1039/d3cc01387a
-
[12]
Y.T. Chen, M.A.T. Marple, D.H.S. Tan, et al., J. Mater. Chem. A 10 (2022) 7155–7164.
doi: 10.1039/d1ta09846b
-
[13]
J.C. Wang, P.F. Wang, T.F. Yi, Energy Storage Mater. 62 (2023) 102958.
-
[14]
L. Ye, E. Gil-González, X. Li, Electrochem. Commun. 128 (2021) 107058.
-
[15]
P. Lu, L. Liu, S. Wang, et al., Adv. Mater. 33 (2021) e2100921.
-
[16]
G. Sahu, Z. Lin, J. Li, et al., Energy Environ. Sci. 7 (2014) 1053–1058.
-
[17]
Y. Wu, J. Xu, P. Lu, et al., Adv. Energy Mater. 13 (2023) 2301336.
-
[18]
Q. Zhang, Z. Ding, G. Liu, et al., Energy Storage Mater. 23 (2019) 168–180.
-
[19]
Y.L. Liao, J.K. Hu, Z.H. Fu, et al., J. Energy Chem. 80 (2023) 458–465.
-
[20]
C. Zheng, J. Zhang, Y. Xia, et al., Small 17 (2021) e2101326.
-
[21]
T.K. Schwietert, V.A. Arszelewska, C. Wang, et al., Nat. Mater. 19 (2020) 428–435.
doi: 10.1038/s41563-019-0576-0
-
[22]
S. Narayanan, U. Ulissi, J.S. Gibson, et al., Nat. Commun. 13 (2022) 7237.
-
[23]
S. Li, S.J. Yang, G.X. Liu, et al., Adv. Mater. 36 (2023) 2307768.
-
[24]
Y. Li, W. Arnold, J.B. Jasinski, et al., Electrochim. Acta 363 (2020) 137128.
-
[25]
S. Cui, X. Wu, Y. Yang, et al., ACS Energy Lett. 7 (2021) 42–52.
doi: 10.2117/psysoc.2019-a108
-
[26]
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 11 (2021) 2100046.
-
[27]
T. Yan, F. Li, C. Xu, H.T. Fang, Electrochim. Acta 410 (2022) 140004.
-
[28]
Y. Jin, Q. He, G. Liu, et al., Adv. Mater. 35 (2023) e2211047.
-
[29]
L.H. Li, Y. Chen, Langmuir 26 (2009) 5135–5140.
-
[30]
Q. Cai, D. Scullion, W. Gan, et al., Sci. Adv. 5 (2019) eaav0129.
-
[31]
Q. Cheng, A. Li, N. Li, et al., Joule 3 (2019) 1510–1522.
-
[32]
J. Xie, L. Liao, Y. Gong, et al., Sci. Adv. 3 (2017) eaao3170.
-
[33]
G. Li, H. Li, Y. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 56109–56115.
doi: 10.1021/acsami.1c15980
-
[34]
Z. Xu, Y. Chen, W. Li, et al., RSC Adv. 8 (2018) 17944–17949.
doi: 10.1039/c8ra02017e
-
[35]
C. Steinborn, M. Herrmann, U. Keitel, et al., J. Eur. Ceramic Soc. 33 (2013) 1225–1235.
-
[36]
K. Yan, H.W. Lee, T. Gao, et al., Nano Lett. 14 (2014) 6016–6022.
doi: 10.1021/nl503125u
-
[37]
S. Hori, R. Kanno, X. Sun, et al., J. Power Sources 556 (2023) 232450.
-
[38]
J. Xiao, Q. Li, Y. Bi, et al., Nat. Energy 5 (2020) 561–568.
doi: 10.1038/s41560-020-0648-z
-
[39]
L. Chen, T. Gu, J. Ma, et al., Nano Energy 100 (2022) 107470.