Citation: Liang Lou, Xuncheng Liu, Yuanyu Wang, Tao Hu, Zhongjie Wang, Houqiang Shi, Junkai Xiong, Siqi Jing, Liankang Ye, Qihui Guo, Xiang Ge. Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient[J]. Chinese Chemical Letters, ;2025, 36(5): 109726. doi: 10.1016/j.cclet.2024.109726 shu

Achieving reusability of leachate for multi-element recovery of the discarded LiNixCoyMn1-x-yO2 cathode by regulating the co-precipitation coefficient

    * Corresponding author.
    E-mail address: xge@gzu.edu.cn (X. Ge).
  • Received Date: 26 December 2023
    Revised Date: 18 February 2024
    Accepted Date: 1 March 2024
    Available Online: 6 March 2024

Figures(5)

  • Conventional hydrometallurgy recycling process for treating wasted lithium-ion batteries (LIBs) typically results in the consumption of large amounts of corrosive leachates. Recent research on reusable leachate is expected to significantly improve the economic and environmental benefits, but is usually limited to specific and unique chemical reactions which could only apply to one type of metal elements. Herein, we report the co-extraction of multiple metal elements can be extracted without adding precipitates by mixed crystal co-precipitation, which enables the reusability of the leachate. We show that an oxalic acid (OA): choline chloride (ChCl): ethylene glycol (EG) type DES leachate system can leach transition metals from wasted LiNixCoyMn1-x-yO2 (NCM) cathode materials with satisfactory efficiency (The time required for complete leaching at 120 ℃ is 1.5 h). The transition metals were then efficiently extracted (with a recovery efficiency of over 96% for all elements) by directly adding water without precipitants. Noteworthy, the leachate can be efficiently recovered by directly evaporating the added water. The successful realization of reusability of leachate for the synergistic extraction of multiple elements relies on the regulation of the mixed crystal co-precipitation coefficient, which is realized by rationally design the reaction condition (composition of leachate, temperature and time) and induces the extraction of originally soluble manganese element. Our strategy is expected to be generally applicable and highly competent for industrial applications.
  • 加载中
    1. [1]

      G. Harper, R. Sommerville, E. Kendrick, et al., Nature 575 (2019) 75–86.  doi: 10.1038/s41586-019-1682-5

    2. [2]

      H.J. Peng, J.Q. Huang, X.B. Cheng, et al., Adv. Energy Mater. 7 (2017) 1700260.

    3. [3]

      D.M. Li, B. Zhang, X. Ou, et al., Chin. Chem. Lett. 32 (2021) 2333–2337.

    4. [4]

      M. Du, J.Z. Guo, S.H. Zheng, et al., Chin. Chem. Lett. 34 (2023) 107706.

    5. [5]

      X. Yan, T. Li, Y. Xiong, et al., Energy Storage Mater. 36 (2021) 213–221.

    6. [6]

      X. Yan, Q. Guo, W. Huang, et al., Carbon Neutralization 2 (2023) 300–309.  doi: 10.1002/cnl2.55

    7. [7]

      S. Jing, X. Yan, Y. Xiong, et al., J. Energy Chem. 84 (2023) 34–40.

    8. [8]

      X. Ge, S.K. Cao, Z.S. Lv, et al., Adv. Mater. 34 (2022) 2206797.

    9. [9]

      J.W. Liu, M. Yue, S.Q. Wang, et al., Adv. Funct. Mater. 33 (2023) 2214432.

    10. [10]

      V. Srivastava, V. Rantala, P. Mehdipour, et al., Chem. Eng. J. 474 (2023) 145822.

    11. [11]

      J.F. Zhang, J.T. Zou, D. He, et al., Green Chem. 25 (2023) 6057–6066.  doi: 10.1039/d3gc00116d

    12. [12]

      M. Du, K.D. Du, J.Z. Guo, et al., Rare Met. 42 (2023) 1603–1613.  doi: 10.1007/s12598-022-02230-8

    13. [13]

      Y.F. Meng, H.J. Liang, C.D. Zhao, et al., J. Energy Chem. 64 (2022) 166–171.

    14. [14]

      X.X. Zhao, X.T. Wang, J.Z. Guo, et al., Adv. Mater. 36 (2024) 2308927.

    15. [15]

      X. Liu, R. Wang, S. Liu, et al., Adv. Energy Mater. 13 (2023) 2302987.

    16. [16]

      R. Kumar, S. Chakrabortty, P. Chakrabortty, et al., Chem. Eng. J. 470 (2023) 144169.

    17. [17]

      G. Liang, J. Zhang, H. Liu, et al., ACS Sustain. Chem. Eng. 11 (2023) 12484–12493.  doi: 10.1021/acssuschemeng.3c00343

    18. [18]

      M. Wang, Z. Xu, S. Dutta, et al., One Earth 6 (2023) 1400–1413.

    19. [19]

      M. Gutsch, J. Leker, Appl. Energy 353 (2024) 122132.

    20. [20]

      Y.E. Milian, N. Jamett, C. Cruz, et al., Sci. Total Environ. 910 (2023) 168543.

    21. [21]

      A. Porvali, M. Aaltonen, S. Ojanen, et al., Resour. Conserv. Recycl. 142 (2019) 257–266.

    22. [22]

      X. Chang, M. Fan, C.F. Gu, et al., Angew. Chem. Int. Ed. 61 (2022) e202202558.

    23. [23]

      W. Mrozik, M.A. Rajaeifar, O. Heidrich, et al., Energy Environ. Sci. 14 (2021) 6099–6121.  doi: 10.1039/d1ee00691f

    24. [24]

      X. Zheng, Z. Zhu, X. Lin, et al., Engineering 4 (2018) 361–370.

    25. [25]

      D.J. Garole, R. Hossain, V.J. Garole, et al., ChemSusChem 13 (2020) 3079–3100.  doi: 10.1002/cssc.201903213

    26. [26]

      C. Ma, M. Svärd, K. Forsberg, Resour. Conserv. Recycl. 186 (2022) 106579.

    27. [27]

      A. Zhu, X. Bian, W. Han, et al., Resour. Conserv. Recycl. 188 (2023) 106690.

    28. [28]

      P.G. Schiavi, P. Altimari, M. Branchi, et al., Chem. Eng. J. 417 (2021) 129249.

    29. [29]

      P.G. Schiavi, P. Altimari, E. Sturabotti, et al., ChemSusChem 15 (2022) e202200966.

    30. [30]

      X. Zeng, J. Li, B. Shen, J. Hazard. Mater. 295 (2015) 112–118.

    31. [31]

      X. Chen, H. Ma, C. Luo, et al., J. Hazard. Mater. 326 (2017) 77–86.

    32. [32]

      R. Golmohammadzadeh, F. Faraji, F. Rashchi, Resour. Conserv. Recycl. 136 (2018) 418–435.

    33. [33]

      S. Barik, G. Prabaharan, L. Kumar, J. Cleaner Prod. 147 (2017) 37–43.

    34. [34]

      Y. Guo, F. Li, H. Zhu, et al., Waste Manage. 51 (2016) 227–233.

    35. [35]

      T. Li, Y. Xiong, X. Yan, et al., J. Energy Chem. 72 (2022) 532–538.

    36. [36]

      C. Liu, P. Liu, H. Xu, et al., Resour. Conserv. Recycl. 190 (2023) 106782.

    37. [37]

      A. Verma, G.H. Johnson, D.R. Corbin, et al., ACS Sustain. Chem. Eng. 8 (2020) 6100–6108.  doi: 10.1021/acssuschemeng.0c01128

    38. [38]

      J. Tan, Q. Wang, S. Chen, et al., Energy Storage Mater. 41 (2021) 380–394.  doi: 10.3390/rel12060380

    39. [39]

      S. Refly, O. Floweri, T.R. Mayangsari, et al., ACS Sustain. Chem. Eng. 8 (2020) 16104–16114.  doi: 10.1021/acssuschemeng.0c01006

    40. [40]

      L. Yu, X. Liu, S. Feng, et al., Chem. Eng. J. 476 (2023) 146733.

    41. [41]

      A.R. Carreira, A. Nogueira, A.P. Crema, et al., Chem. Eng. J. 475 (2023) 146374.

    42. [42]

      M. Fan, X. Chang, Q. Meng, et al., SusMat 1 (2021) 241–254.  doi: 10.1002/sus2.16

    43. [43]

      I. Kolthoff, J. Chem. Phys. 36 (2002) 860–881.

    44. [44]

      M.K. Tran, M.T.F. Rodrigues, K. Kato, et al., Nat. Energy 4 (2019) 339–345.  doi: 10.1038/s41560-019-0368-4

    45. [45]

      Y. Fan, Y. Kong, P. Jiang, et al., Chem. Eng. J. 463 (2023) 142278.

    46. [46]

      Y. Hua, Y. Sun, F. Yan, et al., Chem. Eng. J. 436 (2022) 133200.

    47. [47]

      F. Huang, T. Li, X. Yan, et al., ACS Omega 7 (2022) 11452–11459.  doi: 10.1021/acsomega.2c00742

    48. [48]

      Z. Wang, S. Li, T. Li, et al., Min. Metall. Explor. 39 (2022) 2149–2165.  doi: 10.1007/s42461-022-00660-7

    49. [49]

      Y. Chen, Y. Wang, Y. Bai, et al., ACS Sustain. Chem. Eng. 9 (2021) 12940–12948.  doi: 10.1021/acssuschemeng.1c04220

    50. [50]

      X. Ge, C. Gu, X. Wang, et al., J. Mater. Chem. A 5 (2017) 8209–8229.

    51. [51]

      N.R. Rodriguez, A. van den Bruinhorst, L.J. Kollau, et al., ACS Sustain. Chem. Eng. 7 (2019) 11521–11528.

    52. [52]

      L. Li, Y. Bian, X. Zhang, et al., Waste Manage. 71 (2018) 362–371.  doi: 10.13110/marvelstales.32.2.0362

    53. [53]

      H.A. Doerner, W.M. Hoskins, J. Am. Chem. Soc. 47 (1925) 662–675.  doi: 10.1021/ja01680a010

    54. [54]

      H. Dong, G.M. Koenig, CrystEngComm 22 (2020) 1514–1530.  doi: 10.1039/c9ce00679f

    55. [55]

      Y. Luo, L. Ou, C. Yin, Sci. Total Environ. 875 (2023) 162567.

    56. [56]

      T. Hu, T. Li, X. Liu, et al., Green Chem. 26 (2024) 2653–2660.  doi: 10.1039/d3gc04166b

    57. [57]

      J. You, Z. Qin, G. Wang, et al., J. Clean. Prod. 428 (2023) 139488.

    58. [58]

      Y. Lan, X. Li, G. Zhou, et al., Adv. Sci. 11 (2024) e2304425.

    59. [59]

      Y. Tao, C.D. Rahn, L.A. Archer, et al., Sci. Adv. 7 (2021) eabi7633.

    60. [60]

      K. Du, E.H. Ang, X. Wu, et al., Energy Environ. Mater. 5 (2022) 1012–1036.  doi: 10.1002/eem2.12271

    61. [61]

      D. Song, J. Yu, M. Wang, et al., Energy Storage Mater. 61 (2023) 102870.

    62. [62]

      J.B. Dunn, L. Gaines, J.C. Kelly, et al., Energy Environ. Sci. 8 (2015) 158–168.

    63. [63]

      C.M. Costa, J.C. Barbosa, R. Gonçalves, et al., Energy Storage Mater. 37 (2021) 433–465.

    64. [64]

      Z. Chen, R. Feng, W. Wang, et al., Nat. Commun. 14 (2023) 4648.

  • 加载中
    1. [1]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    3. [3]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    4. [4]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    5. [5]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    6. [6]

      Bing XieQi JiangFang ZhuYaoyao LaiYueming ZhaoWei HePei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    9. [9]

      Xiangyue LiDexin ZhuKunmin PanXiaoye ZhouJiaming ZhuYingxue WangYongpeng RenHong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870

    10. [10]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    13. [13]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    14. [14]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    15. [15]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    16. [16]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    17. [17]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    18. [18]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    19. [19]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    20. [20]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

Metrics
  • PDF Downloads(1)
  • Abstract views(24)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return