Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study
-
* Corresponding authors.
E-mail addresses: yanglei21@njust.edu.cn (L. Yang), xbb420@just.edu.cn (B.-B. Xiao).
Citation:
Xu Huang, Kai-Yin Wu, Chao Su, Lei Yang, Bei-Bei Xiao. Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study[J]. Chinese Chemical Letters,
;2025, 36(4): 109720.
doi:
10.1016/j.cclet.2024.109720
J.Y. Liu, S.M. Zhu, B. Wang, et al., Chin. Chem. Lett. 34 (2023) 107749.
doi: 10.1016/j.cclet.2022.107749
Y.B. Wu, C. He, W.X. Zhang, J. Energy Chem. 82 (2023) 375–386.
doi: 10.3390/jpm13030375
X.Y. Liu, C.G. Jia, G.M. Jiang, et al., Chin. Chem. Lett. 35 (2024) 109455.
M.G. Kibria, H.P.T. Nguyen, K. Cui, et al., ACS Nano 7 (2013) 7886–7893.
doi: 10.1021/nn4028823
Y. Liu, X.W. Zhang, L.S. Lu, et al., Chin. Chem. Lett. 33 (2022) 1271–1274.
W.X. Zhang, S. Xi, Y. Liang, C. He, Appl. Surf. Sci. 608 (2023) 155106.
doi: 10.1016/j.apsusc.2022.155106
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
Q. Wang, K. Domen, Chem. Rev. 120 (2020) 919–985.
doi: 10.1021/acs.chemrev.9b00201
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Science 334 (2011) 1383–1385.
doi: 10.1126/science.1212858
Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Adv. Mater. 31 (2019) 1901997.
doi: 10.1002/adma.201901997
K. Maeda, K. Domen, J. Phys. Chem. C 111 (2007) 7851–7861.
doi: 10.1021/jp070911w
A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253–278.
doi: 10.1039/B800489G
H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 125 (2003) 3082–3089.
P. Peerakiatkhajohn, J.H. Yun, H.J. Chen, et al., Adv. Mater. 28 (2016) 6405–6410.
doi: 10.1002/adma.201601525
F. Boudoire, R. Toth, J. Heier, et al., Energy Environ. Sci. 7 (2014) 2680–2688.
T. Heine, Acc. Chem. Res. 48 (2015) 65–72.
doi: 10.1021/ar500277z
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Nat. Nanotechnol. 7 (2012) 699–712.
doi: 10.1038/nnano.2012.193
K. Li, M. Han, R. Chen, et al., Adv. Mater. 28 (2016) 8906–8911.
doi: 10.1002/adma.201601047
J.G. Hou, H.J. Cheng, O. Takeda, H.M. Zhu, Energy Environ. Sci. 8 (2015) 1348–1357.
C. He, J.L. Ma, Y.B. Wu, W.X. Zhang, J. Energy Chem. 84 (2023) 131–139.
M.J. Liao, J.Y. Feng, W.J. Luo, et al., Adv. Funct. Mater. 22 (2012) 3066–3074.
doi: 10.1002/adfm.201102966
W.J. Ong, L.L. Tan, Y.H. Ng, et al., Chem. Rev. 116 (2016) 7159–7329.
doi: 10.1021/acs.chemrev.6b00075
X.C. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76–80.
doi: 10.1038/nmat2317
Y. Zheng, J. Liu, J. Liang, et al., Energy Environ. Sci. 5 (2012) 6717.
doi: 10.1039/c2ee03479d
Y. Zhang, L.T. Wu, S.P. Wang, et al., Chin. Chem. Lett. 35 (2024) 108551.
doi: 10.1016/j.cclet.2023.108551
K. Maeda, K. Teramura, N. Saito, et al., J. Catal. 243 (2006) 303–308.
doi: 10.1016/j.jcat.2006.07.023
A. Sinhamahapatra, J.P. Jeon, J.S. Yu, Energy Environ. Sci. 8 (2015) 3539–3544.
doi: 10.1039/C5EE02443A
Y. Yuan, J.N. Pan, W.N. Yin, et al., Chin. Chem. Lett. 35 (2024) 108724.
doi: 10.1016/j.cclet.2023.108724
Y.J. Lin, Y. Xu, M.T. Mayer, et al., J. Am. Chem. Soc. 134 (2012) 5508–5511.
doi: 10.1021/ja300319g
C.D. Lv, G. Chen, X. Zhou, et al., ACS Appl. Mater. Interfaces 9 (2017) 23748–23755.
doi: 10.1021/acsami.7b05302
F. Yu, L.C. Wang, Q.J. Xing, et al., Chin. Chem. Lett. 31 (2020) 1648–1653.
doi: 10.1016/j.cclet.2019.08.020
A. Naseri, M. Samadi, A. Pourjavadi, et al., J. Mater. Chem. A 5 (2017) 23406–23433.
doi: 10.1039/C7TA05131J
J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018) 1701503.
doi: 10.1002/aenm.201701503
S.W. Cao, J.G. Yu, J. Phys. Chem. Lett. 5 (2014) 2101–2107.
doi: 10.1021/jz500546b
J.J. Wang, Z.Y. Guan, J. Huang, et al., J. Mater. Chem. A 2 (2014) 7960–7966.
doi: 10.1039/C4TA00275J
L.N. Wang, Z.J. Liu, J.M. Zhang, et al., Chin. Chem. Lett. 34 (2023) 108007.
doi: 10.1016/j.cclet.2022.108007
T.L. Xia, Y.C. Lin, W.Z. Li, M.T. Ju, Chin. Chem. Lett. 32 (2021) 2975–2984.
doi: 10.1016/j.cclet.2021.02.058
P. Horcajada, C. Serre, G. Maurin, et al., J. Am. Chem. Soc. 130 (2008) 6774–6780.
doi: 10.1021/ja710973k
J.S. Seo, D. Whang, H. Lee, et al., Nature 404 (2000) 982–986.
doi: 10.1038/35010088
S. Horike, M. Dincǎ, K. Tamaki, J.R. Long, J. Am. Chem. Soc. 130 (2008) 5854–5855.
doi: 10.1021/ja800669j
W.G. Zeng, Y.C. Dong, X.Y. Ye, et al., Chin. Chem. Lett. 35 (2024) 109252.
doi: 10.1016/j.cclet.2023.109252
J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38 (2009) 1477.
doi: 10.1039/b802426j
W.F. Zhang, L. Wang, G.C. Ding, et al., Chin. Chem. Lett. 34 (2023) 107328.
doi: 10.1016/j.cclet.2022.03.051
W.X. Zhang, Z. Li, J.H. Zhang, et al., J. Alloy. Compd. 971 (2024) 172669.
doi: 10.1016/j.jallcom.2023.172669
H.B. Qiu, Y. Inoue, S.N. Che, Angew. Chem. Int. Ed. 48 (2009) 3069–3072.
doi: 10.1002/anie.200900303
S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, et al., Science 283 (1999) 1148–1150.
doi: 10.1126/science.283.5405.1148
K. Schlichte, T. Kratzke, S. Kaskel, Micropor. Mesopor. Mat. 73 (2004) 81–88.
doi: 10.1016/j.micromeso.2003.12.027
X.Q. Dong, X.Y. Liu, Y.F. Chen, M.H. Zhang, J. CO2 Util. 24 (2018) 64–72.
doi: 10.1016/j.jcou.2017.11.014
M. Jin, X.F. Qian, J.K. Gao, et al., Inorg. Chem. 58 (2019) 8332–8338.
doi: 10.1021/acs.inorgchem.9b00362
F.A. Sofi, K. Majid, O. Mehraj, J. Alloy. Compd. 737 (2018) 798–808.
doi: 10.1016/j.jallcom.2017.12.141
S.S. Xu, H.L. Huang, X.Y. Guo, et al., Sep. Purif. Technol. 257 (2021) 117979.
doi: 10.1016/j.seppur.2020.117979
Z.W. Liu, K. Zhang, Y. Wu, H.X. Xi, J. Mater. Sci. 53 (2018) 6080–6093.
doi: 10.1007/s10853-017-1751-9
J.Y. Ye, C.J. Liu, Chem. Commun. 47 (2011) 2167.
doi: 10.1039/c0cc04944a
S. Ketrat, T. Maihom, S. Wannakao, et al., Inorg. Chem. 56 (2017) 14005–14012.
doi: 10.1021/acs.inorgchem.7b02143
Y. Wang, J.F. Yang, Z.J. Li, et al., RSC Adv. 5 (2015) 33432–33437.
doi: 10.1039/C5RA04791A
X. Chen, Y.H. Li, M.X. Leng, Colloid Surf. A 644 (2022) 128882.
doi: 10.1016/j.colsurfa.2022.128882
B. Mourino, K.M. Jablonka, A. Ortega-Guerrero, B. Smit, Adv. Funct. Mater. 33 (2023) 2301594.
doi: 10.1002/adfm.202301594
J.K. Xu, Q. Wan, M. Anpo, S. Lin, J. Phys. Chem. C 124 (2020) 6624–6633.
doi: 10.1021/acs.jpcc.9b11385
M. Idrees, B. Amin, Y. Chen, X. Yan, Appl. Surf. Sci. 615 (2023) 156260.
doi: 10.1016/j.apsusc.2022.156260
H. Zhu, X. Zhang, Y. Nie, et al., Appl. Surf. Sci. 635 (2023) 157694.
doi: 10.1016/j.apsusc.2023.157694
W.Y. Zhou, L.C. Dong, L.X. Tan, Q. Tang, J. Phys. Chem. C 125 (2021) 7581–7589.
doi: 10.1021/acs.jpcc.1c01110
T. Das, G. Di Liberto, S. Tosoni, G. Pacchioni, J. Chem. Theory Comput. 15 (2019) 6294–6312.
doi: 10.1021/acs.jctc.9b00545
I. Singh, A.A. El-Emam, S.K. Pathak, et al., Mol. Simulat. 45 (2019) 1029–1043.
doi: 10.1080/08927022.2019.1629434
M.C. Zhang, K.X. Zhang, X. Ai, et al., Chin. J. Catal. 43 (2022) 2987–3018.
doi: 10.1016/S1872-2067(22)64103-2
P. Sen, K. Alam, T. Das, et al., J. Phys. Chem. Lett. 11 (2020) 3192–3197.
doi: 10.1021/acs.jpclett.0c00710
J. Li, J. Zhang, J. Zhang, et al., J. Mater. Chem. A 11 (2023) 19812–19844.
doi: 10.1039/d3ta04199a
J. Li, N.T. Wu, J. Zhang, et al., Nano Micro Lett. 15 (2023) 227.
doi: 10.1007/s40820-023-01192-5
I.C. Man, H.Y. Su, F. Calle-Vallejo, et al., ChemCatChem 3 (2011) 1159–1165.
doi: 10.1002/cctc.201000397
J.H. Xia, X.Y. Liu, H.B. Zhou, et al., Catal. Sci. Technol. 11 (2021) 7905–7913.
doi: 10.1039/d1cy01505b
J. Hu, H.J. Yu, W. Dai, et al., RSC Adv. 4 (2014) 35124–35130.
doi: 10.1039/C4RA05772D
F.P. Tian, C.X. Qiao, R.Y. Zheng, et al., RSC Adv. 9 (2019) 15642–15647.
doi: 10.1039/c9ra02372k
T.T. Wang, X.X. Li, W. Dai, et al., J. Mater. Chem. A 3 (2015) 21044–21050.
Liang Dong , Jingkuo Qu , Tuo Zhang , Guanghui Zhu , Ningning Ma , Chang Zhao , Yi Yuan , Xiangjiu Guan , Liejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205